Home
Class 9
MATHS
In triangle ABC, angle ABC - 90^(@) , A...

In triangle ABC,` angle ABC - 90^(@) , AB = 2a+ 1 and BC = 2a^(2) +2a. ` Find AC in terms of 'a' if a= 8 , find the lengths of the sides of the triangles.

Text Solution

AI Generated Solution

The correct Answer is:
To find the length of side AC in triangle ABC, where angle ABC is 90 degrees, we can use the Pythagorean theorem. The lengths of sides AB and BC are given as follows: - AB = 2a + 1 - BC = 2a² + 2a ### Step-by-Step Solution: 1. **Identify the sides**: - We have AB = 2a + 1 - We have BC = 2a² + 2a 2. **Apply the Pythagorean theorem**: According to the Pythagorean theorem, in a right triangle: \[ AC^2 = AB^2 + BC^2 \] 3. **Calculate AB²**: \[ AB^2 = (2a + 1)^2 = (2a)^2 + 2 \cdot (2a) \cdot 1 + 1^2 = 4a^2 + 4a + 1 \] 4. **Calculate BC²**: \[ BC^2 = (2a^2 + 2a)^2 = (2a^2)^2 + 2 \cdot (2a^2) \cdot (2a) + (2a)^2 = 4a^4 + 8a^3 + 4a^2 \] 5. **Combine the results**: Now substitute AB² and BC² into the Pythagorean theorem: \[ AC^2 = (4a^2 + 4a + 1) + (4a^4 + 8a^3 + 4a^2) \] Combine like terms: \[ AC^2 = 4a^4 + 8a^3 + (4a^2 + 4a^2) + 4a + 1 = 4a^4 + 8a^3 + 8a^2 + 4a + 1 \] 6. **Find AC**: To find AC, we take the square root: \[ AC = \sqrt{4a^4 + 8a^3 + 8a^2 + 4a + 1} \] 7. **Substitute a = 8**: Now substitute \( a = 8 \): \[ AC = \sqrt{4(8^4) + 8(8^3) + 8(8^2) + 4(8) + 1} \] Calculate each term: - \( 8^4 = 4096 \) - \( 8^3 = 512 \) - \( 8^2 = 64 \) Now substitute: \[ AC = \sqrt{4(4096) + 8(512) + 8(64) + 4(8) + 1} \] \[ = \sqrt{16384 + 4096 + 512 + 32 + 1} \] \[ = \sqrt{21025} \] 8. **Calculate the square root**: The square root of 21025 is: \[ AC = 145 \] 9. **Calculate AB and BC**: Now calculate AB and BC using \( a = 8 \): - \( AB = 2(8) + 1 = 16 + 1 = 17 \) - \( BC = 2(8^2) + 2(8) = 2(64) + 16 = 128 + 16 = 144 \) ### Final Results: - AC = 145 - AB = 17 - BC = 144
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Rectillinear figures|24 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Area theorems|11 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Mid-point and intercept theorem|11 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

In triangle ABC , angle B = 90 ^(@) , AB = 40 , AC + BC = 80 , Find : sin A

In triangle ABC , angle B = 90 ^(@) , AB = 40 , AC + BC = 80 , Find : cos A

In triangle ABC , angle B = 90 ^(@) , AB = 40 , AC + BC = 80 , Find : tan C .

In the following figure, angle ABC= 90 ^(@) AB = (x+8) cm , BC = (x+ 1) cm and AC = (x+15) cm. Find the lengths of the sides of the triangles.

In triangle ABC , angleABC = 90^@ , angle CAB = x^@ , tan x^@ = 3/4 and BC = 15 cm . Find the measures of AB and AC.

In a triangle ABC if angle ABC=60^(@) , then ((AB-BC+CA)/(r ))^(2)=

In Delta ABC , angle A is 120^(@), BC + CA = 20, and AB + BC = 21 Find the length of the side BC

In Delta ABC , angle C = 90 ^(@) , AB = 20 and BC = 12 . D is a point in side AC such that CD = 9 Taking angle BDC = x, find sin angle ABC

In Delta ABC , angle C = 90 ^(@) , AB = 20 and BC = 12 . D is a point in side AC such that CD = 9 Taking angle BDC = x, find tan x- cos x + 3 sin x .

In triangle ABC, angleB = 90^@ and tan A = 0.75 If AC = 30 cm, find the lengths of AB and BC.