Home
Class 9
MATHS
If cos A = (9)/(41) , find the value o...

If cos ` A = (9)/(41) `, find the value of
` (1)/(sin ^(2)A ) - cot ^(2) A `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{1}{\sin^2 A} - \cot^2 A \) given that \( \cos A = \frac{9}{41} \). ### Step-by-step Solution: 1. **Use the Pythagorean Identity**: We know that \( \sin^2 A + \cos^2 A = 1 \). Since we have \( \cos A = \frac{9}{41} \), we can find \( \sin^2 A \). \[ \sin^2 A = 1 - \cos^2 A \] Calculate \( \cos^2 A \): \[ \cos^2 A = \left(\frac{9}{41}\right)^2 = \frac{81}{1681} \] Therefore, \[ \sin^2 A = 1 - \frac{81}{1681} = \frac{1681 - 81}{1681} = \frac{1600}{1681} \] 2. **Find \( \cot^2 A \)**: Recall that \( \cot A = \frac{\cos A}{\sin A} \). Thus, \[ \cot^2 A = \frac{\cos^2 A}{\sin^2 A} \] Substitute the values: \[ \cot^2 A = \frac{\frac{81}{1681}}{\frac{1600}{1681}} = \frac{81}{1600} \] 3. **Substitute into the expression**: Now we substitute \( \sin^2 A \) and \( \cot^2 A \) into the expression \( \frac{1}{\sin^2 A} - \cot^2 A \): \[ \frac{1}{\sin^2 A} = \frac{1681}{1600} \] Therefore, \[ \frac{1}{\sin^2 A} - \cot^2 A = \frac{1681}{1600} - \frac{81}{1600} \] 4. **Combine the fractions**: Since both fractions have the same denominator, we can combine them: \[ \frac{1681 - 81}{1600} = \frac{1600}{1600} = 1 \] Thus, the final answer is: \[ \frac{1}{\sin^2 A} - \cot^2 A = 1 \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise co-ordinate Geometry|24 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise solids|11 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

If cosec A = sqrt3 , find the value of: (2 sin ^(2)A + 3 cot ^(2) A)/( tan ^(2) A+ cos ^(2)A)

Find the value of : arc sin (1/2) + arc cos (1/2)

If tanA=1 ,then find the value of sin^(2)A+cos^(2)A+cotA .

If cos (2 sin^(-1) x) = (1)/(9) , then find the value of x

Find the value of sin((1)/(2) cot^(-1) (-(3)/(4)))

If 3 cos A = 4 sin A, find the value of : 3 - cot^2A+ "cosec"^2A

Find the value of, cos [tan^(-1) {sin (cot^(-1)x)}]

If 2cos(A+B)=2sin(A-B)=1 , find the values of A and B.

If 2cos(A+B)=2sin(A-B)=1 , find the values of A and B.

If cos e c\ A=sqrt(2) , find the value of (2sin^2A+3cot^2A)/(4tan^2A-cos^2A) .

ICSE-CHAPTERWISE REVISION (STAGE 1) -Trigonometry
  1. If cos A = 4 sin A , find the value of , 4 cos ^(2) A - 3 sin ^(2)...

    Text Solution

    |

  2. If 4 cos ^(2) A -3 =0 and 0^(@) le A le 90 ^(@) find : angla A

    Text Solution

    |

  3. If 4 cos ^(2) A -3 =0 and 0^(@) le A le 90 ^(@) find : cos 3A

    Text Solution

    |

  4. If 4 cos ^(2) A -3 =0 and 0^(@) le A le 90 ^(@) find : tan ^...

    Text Solution

    |

  5. If 2 cos (A-B) = 2 sin ( A+ B) = sqrt3 find the value of acute a...

    Text Solution

    |

  6. If cos A = (9)/(41) , find the value of (1)/(sin ^(2)A ) - cot ^...

    Text Solution

    |

  7. If (2 cos 2A-1) (tan 3A-1)= 0, find all possible values of A

    Text Solution

    |

  8. If tan A =1 and tan b = sqrt3 , evaluate : cos A cos B - sin A sin...

    Text Solution

    |

  9. If tan A =1 and tan b = sqrt3 , evaluate : sin A cos B+ cos A sin...

    Text Solution

    |

  10. Find the value of angle A , if : sin 2A = 1

    Text Solution

    |

  11. Find the value of angle A , if : 2 sin 2A =1

    Text Solution

    |

  12. Find the value of angle A , if : 2 sin A=1

    Text Solution

    |

  13. Using the given figure , find the value of angle A , if : (i) x= y...

    Text Solution

    |

  14. Find the 'x' in each of the following

    Text Solution

    |

  15. In the figures given below , find AB:

    Text Solution

    |

  16. In the given figure angle B = 90 ^(@) and angle ADB = x^(@) , Fin...

    Text Solution

    |

  17. Evaluate : tan 25^(@) tan 65 ^(@) - cot 25^(@) cot 65^(@)

    Text Solution

    |

  18. Evaluate : (sec 42^(@))/( cosec 48^(@)) + ( 3 tan 50 ^(@))/( cot 4...

    Text Solution

    |

  19. In Delta ABC , angle B = 90 ^(@) Evaluate : cosec A cos C - sin ...

    Text Solution

    |

  20. For triangle ABC prove that sec((A+B)/2)="cosec"C/2

    Text Solution

    |