Home
Class 9
MATHS
If x= 5 - 2 sqrt6 , find the value of...

If ` x= 5 - 2 sqrt6 , ` find the value of :
`x^(2) +(1)/(x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( x^2 + \frac{1}{x^2} \) given \( x = 5 - 2\sqrt{6} \), we can follow these steps: ### Step 1: Find \( \frac{1}{x} \) We start by calculating \( \frac{1}{x} \): \[ \frac{1}{x} = \frac{1}{5 - 2\sqrt{6}} \] To rationalize the denominator, we multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{1}{x} = \frac{1 \cdot (5 + 2\sqrt{6})}{(5 - 2\sqrt{6})(5 + 2\sqrt{6})} \] ### Step 2: Calculate the Denominator Now, we calculate the denominator using the difference of squares: \[ (5 - 2\sqrt{6})(5 + 2\sqrt{6}) = 5^2 - (2\sqrt{6})^2 = 25 - 24 = 1 \] Thus, we have: \[ \frac{1}{x} = 5 + 2\sqrt{6} \] ### Step 3: Calculate \( x + \frac{1}{x} \) Now we can find \( x + \frac{1}{x} \): \[ x + \frac{1}{x} = (5 - 2\sqrt{6}) + (5 + 2\sqrt{6}) = 5 - 2\sqrt{6} + 5 + 2\sqrt{6} \] The \( -2\sqrt{6} \) and \( +2\sqrt{6} \) cancel each other out: \[ x + \frac{1}{x} = 10 \] ### Step 4: Square \( x + \frac{1}{x} \) Next, we square both sides: \[ \left( x + \frac{1}{x} \right)^2 = 10^2 \] This gives us: \[ x^2 + 2 + \frac{1}{x^2} = 100 \] ### Step 5: Solve for \( x^2 + \frac{1}{x^2} \) Now, we can isolate \( x^2 + \frac{1}{x^2} \): \[ x^2 + \frac{1}{x^2} = 100 - 2 = 98 \] ### Final Answer Thus, the value of \( x^2 + \frac{1}{x^2} \) is: \[ \boxed{98} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise COMPOUND INTEREST |27 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise FACTRORISATIONS |10 Videos
  • AREA THEOREMS

    ICSE|Exercise Exercies 16(C )|22 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos

Similar Questions

Explore conceptually related problems

If 2x= 3+ sqrt7 , find the value of : 4x^(2) +(1)/(x^(2))

If x = 2 + sqrt(3) find the value of x^(2) + (1)/(x^(2))

If x = sqrt(3)- sqrt(2) find the value of x^(2)+ (1)/(x^(2))

If x = 2 - sqrt 3 , find the value of (x-1/x)^3

If x=2+\ sqrt(3), find the value of x+1/x

If x=1-sqrt(2), find the value of (x-1/x)^3

If x=1-sqrt(2) , find the value of (x-1/x)^3

If x=1+sqrt 2 , find the value of x^2+1/x^2

If x=2+sqrt(3) , find the value of x^2+1/(x^2)

If x=2+sqrt(3) , find the value of x^2+1/(x^2)