Home
Class 9
MATHS
Evaluate : (log8 xx log9)/(log 27)...

Evaluate :
` (log8 xx log9)/(log 27) `

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \frac{\log 8 \times \log 9}{\log 27} \), we can follow these steps: ### Step 1: Rewrite the logarithms in terms of base 2 and base 3 We know that: - \( 8 = 2^3 \) - \( 9 = 3^2 \) - \( 27 = 3^3 \) Thus, we can rewrite the logarithms: \[ \log 8 = \log(2^3) \quad \text{and} \quad \log 9 = \log(3^2) \quad \text{and} \quad \log 27 = \log(3^3) \] ### Step 2: Apply the power rule of logarithms Using the property of logarithms that states \( \log(a^n) = n \log(a) \), we can simplify: \[ \log 8 = 3 \log 2 \] \[ \log 9 = 2 \log 3 \] \[ \log 27 = 3 \log 3 \] ### Step 3: Substitute back into the expression Now substituting these values back into the original expression: \[ \frac{\log 8 \times \log 9}{\log 27} = \frac{(3 \log 2) \times (2 \log 3)}{3 \log 3} \] ### Step 4: Simplify the expression Now we can simplify: \[ = \frac{6 \log 2 \log 3}{3 \log 3} \] ### Step 5: Cancel out common terms The \( \log 3 \) in the numerator and denominator cancels out: \[ = 2 \log 2 \] ### Final Answer Thus, the evaluated expression is: \[ \boxed{2 \log 2} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise TRIANGLES |6 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise ISOSCELES TRIANGLES |6 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise INDICES |6 Videos
  • AREA THEOREMS

    ICSE|Exercise Exercies 16(C )|22 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int [ log (log x) +(1)/((log x)^(2)) ] dx

Evaluate : (log 27)/( log sqrt3)

Evaluate : (i) log_(b)a xx log_(c)b xx log_(a)c (ii) log_(3) 8 div log_(9) 16 (iii) (log_(5)8)/(log_(25)16 xx log_(100)10)

Evaluate: log_(9)27 - log_(27)9

Evaluate: log_(9)27 - log_(27)9

Solve for x : (i) (log 81)/(log 27) = x (ii) (log 128)/(log 32) = x (iii) (log 64)/(log 8) = log x (iv) (log 225)/(log 15) = log x

The value of log_(3) e- log_(9) e + log_(27) e- log_(81) e+…infty is

Evaluate : (i) log_(125) 625 - log_(16) 64 (ii) log_(16) 32 - log_(25) 125 + log_(9) 27 .

Evaluate: 81^(1//log_(s)3) + 27^(log_(g)36) + 3^(4//log_(l)9)

Find the value of ((log)_3 4)((log)_4 5)((log)_5 6)((log)_6 7)((log)_7 8)((log)_8 9)dot