Home
Class 9
MATHS
Evaluate : (log 27)/( log sqrt3)...

Evaluate :
` (log 27)/( log sqrt3)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( \frac{\log 27}{\log \sqrt{3}} \), we can follow these steps: ### Step 1: Rewrite the logarithms We know that \( 27 \) can be expressed as \( 3^3 \) and \( \sqrt{3} \) can be expressed as \( 3^{1/2} \). Therefore, we can rewrite the logarithms as follows: \[ \log 27 = \log(3^3) \quad \text{and} \quad \log \sqrt{3} = \log(3^{1/2}) \] ### Step 2: Apply the power rule of logarithms Using the property of logarithms that states \( \log(a^b) = b \cdot \log a \), we can simplify both logarithms: \[ \log(3^3) = 3 \log 3 \quad \text{and} \quad \log(3^{1/2}) = \frac{1}{2} \log 3 \] ### Step 3: Substitute back into the expression Now we can substitute these simplified forms back into our original expression: \[ \frac{\log 27}{\log \sqrt{3}} = \frac{3 \log 3}{\frac{1}{2} \log 3} \] ### Step 4: Simplify the fraction The \( \log 3 \) in the numerator and denominator cancels out: \[ \frac{3 \log 3}{\frac{1}{2} \log 3} = \frac{3}{\frac{1}{2}} = 3 \times 2 = 6 \] ### Final Answer Thus, the value of \( \frac{\log 27}{\log \sqrt{3}} \) is \( 6 \). ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise TRIANGLES |6 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise ISOSCELES TRIANGLES |6 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise INDICES |6 Videos
  • AREA THEOREMS

    ICSE|Exercise Exercies 16(C )|22 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos

Similar Questions

Explore conceptually related problems

Evaluate : (log8 xx log9)/(log 27)

Evaluate: log_(a^2) b-:log_sqrt(a)(b)^2

Evaluate: log_(9)27 - log_(27)9

Evaluate: log_(9)27 - log_(27)9

If log_(10) 8 = 0.90 , find the value of : (i) log_(10)4 (ii) log sqrt(32) (iii) log 0.125

Solve for x : (i) (log 81)/(log 27) = x (ii) (log 128)/(log 32) = x (iii) (log 64)/(log 8) = log x (iv) (log 225)/(log 15) = log x

Evaluate: log_(2sqrt(3))144

If log 2 = 0.3010 and log 3 = 0.4771, find the value of : (i) log 6 (ii) log 5 (iii) log sqrt(24)

Evaluate: 81^(1//log_(s)3) + 27^(log_(g)36) + 3^(4//log_(l)9)