Home
Class 9
MATHS
If 6 tan A - 5 =0 , find the value of : ...

If 6 tan A - 5 =0 , find the value of :
` " " (3 sin A - cos A)/( 5 cos A + 9 sin A) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \((3 \sin A - \cos A) / (5 \cos A + 9 \sin A)\) given that \(6 \tan A - 5 = 0\). ### Step-by-Step Solution: 1. **Solve for \(\tan A\)**: \[ 6 \tan A - 5 = 0 \] Adding 5 to both sides: \[ 6 \tan A = 5 \] Dividing both sides by 6: \[ \tan A = \frac{5}{6} \] **Hint**: Remember that \(\tan A = \frac{\sin A}{\cos A}\). 2. **Substitute \(\tan A\) into the expression**: We need to evaluate: \[ \frac{3 \sin A - \cos A}{5 \cos A + 9 \sin A} \] We can rewrite \(\sin A\) and \(\cos A\) in terms of \(\tan A\): \[ \sin A = \tan A \cdot \cos A \] Therefore, \[ \sin A = \frac{5}{6} \cos A \] 3. **Substitute \(\sin A\) in the expression**: Substitute \(\sin A = \frac{5}{6} \cos A\) into the expression: \[ \frac{3\left(\frac{5}{6} \cos A\right) - \cos A}{5 \cos A + 9\left(\frac{5}{6} \cos A\right)} \] Simplifying the numerator: \[ \frac{\frac{15}{6} \cos A - \cos A}{5 \cos A + \frac{45}{6} \cos A} \] The numerator becomes: \[ \frac{\frac{15}{6} \cos A - \frac{6}{6} \cos A}{5 \cos A + \frac{45}{6} \cos A} = \frac{\frac{9}{6} \cos A}{5 \cos A + \frac{45}{6} \cos A} \] 4. **Combine terms**: The numerator simplifies to: \[ \frac{3}{2} \cos A \] The denominator simplifies to: \[ 5 \cos A + \frac{45}{6} \cos A = \frac{30}{6} \cos A + \frac{45}{6} \cos A = \frac{75}{6} \cos A \] 5. **Final expression**: Now we have: \[ \frac{\frac{3}{2} \cos A}{\frac{75}{6} \cos A} \] The \(\cos A\) cancels out: \[ = \frac{3}{2} \cdot \frac{6}{75} = \frac{18}{150} = \frac{3}{25} \] ### Final Answer: \[ \frac{3 \sin A - \cos A}{5 \cos A + 9 \sin A} = \frac{3}{25} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise CO- ORDINATE GEOMETRY |5 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise GRAPHICAL SOLUTIONS |3 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise SOLIDS |7 Videos
  • AREA THEOREMS

    ICSE|Exercise Exercies 16(C )|22 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos

Similar Questions

Explore conceptually related problems

If 2 cot A =3, find the value of " " ( 5 sin A - 2 cos A)/( 6 cos A + sin A )

If tan A =a/b , then find the value of ("a sin A- b cos A")/("a sin A + b cos A") .

If tan A=5/12, find the value of (sin A+cos A) sec A

If 3 sin A = 4 cos A , find the value of : tan^2A-sec^2A

If sec A = sqrt2 , find the value of : (3 cos^2 A+5 tan^2A)/(4 tan^2 A - sin^2A)

Find the values of sin (cos−1 3/5)

If sinA = 3/5 and 0^@ lt A lt 90^@ , find the value of sin 2A, cos 2A, tan 2A, and sin 4A .

If cos A =(1)/(3) ,then find the values of sin A and tan A.

If A is in the fourth quadrant and cos A=(5)/(13) , find the value of (13 sin A+5 secA)/(5tanA+6" cosec"A) .

find the value of sin60^@cos3 0^@+sin3 0^@cos6 0^@