Home
Class 9
MATHS
In the following figure , angle B = 90 ...

In the following figure , angle ` B = 90 ^(@) angle ADB = 30 ^(@) and angle ACB = 60 ^(@) `
If ` angle CD = m` find AB .
` (##SEL_RKB_ICSE_MAT_IX_CR_02_E01_162_Q01.png" width="80%">

Text Solution

AI Generated Solution

The correct Answer is:
To solve for the length of \( AB \) in the given triangle configuration, we will follow these steps: ### Step 1: Identify the given information We have: - \( \angle B = 90^\circ \) - \( \angle ADB = 30^\circ \) - \( \angle ACB = 60^\circ \) - \( CD = 40 \, \text{meters} \) ### Step 2: Set up the triangle dimensions Let: - \( BC = X \) - \( AB = Y \) ### Step 3: Use the tangent function in triangle \( ABD \) In triangle \( ABD \), we can use the tangent of angle \( ADB \): \[ \tan(30^\circ) = \frac{AB}{BD} \] Since \( BD = BC + CD = X + 40 \): \[ \tan(30^\circ) = \frac{Y}{X + 40} \] We know that \( \tan(30^\circ) = \frac{1}{\sqrt{3}} \), so we have: \[ \frac{1}{\sqrt{3}} = \frac{Y}{X + 40} \] Cross-multiplying gives us: \[ Y = \frac{1}{\sqrt{3}}(X + 40) \] This can be rewritten as: \[ \sqrt{3}Y = X + 40 \quad \text{(Equation 1)} \] ### Step 4: Use the tangent function in triangle \( ABC \) In triangle \( ABC \), we can use the tangent of angle \( ACB \): \[ \tan(60^\circ) = \frac{AB}{BC} \] Thus: \[ \tan(60^\circ) = \frac{Y}{X} \] Since \( \tan(60^\circ) = \sqrt{3} \), we have: \[ \sqrt{3} = \frac{Y}{X} \] Cross-multiplying gives us: \[ Y = \sqrt{3}X \quad \text{(Equation 2)} \] ### Step 5: Substitute Equation 2 into Equation 1 Substituting \( Y \) from Equation 2 into Equation 1: \[ \sqrt{3}(\sqrt{3}X) = X + 40 \] This simplifies to: \[ 3X = X + 40 \] Subtracting \( X \) from both sides: \[ 2X = 40 \] Dividing by 2: \[ X = 20 \] ### Step 6: Find \( Y \) using Equation 2 Now substituting \( X \) back into Equation 2 to find \( Y \): \[ Y = \sqrt{3} \times 20 = 20\sqrt{3} \] ### Step 7: Calculate the numerical value of \( Y \) Calculating \( Y \): \[ Y \approx 20 \times 1.732 = 34.64 \, \text{meters} \] ### Final Answer Thus, the length of \( AB \) is: \[ AB \approx 34.64 \, \text{meters} \] ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise CO- ORDINATE GEOMETRY |5 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise GRAPHICAL SOLUTIONS |3 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise SOLIDS |7 Videos
  • AREA THEOREMS

    ICSE|Exercise Exercies 16(C )|22 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos

Similar Questions

Explore conceptually related problems

In the given figure ,I is the incentre of triangle ABC . AI produced meets the circumcircle of the triangle ABC at point D. if angle BAC = 50^(@) and angle ABC = 70 ^(@) , find : (i) angle BCD (ii) angle ICD (iii) angle BIC (##SEL_RKB_ICSE_MAT_X_C17_E01_015_Q01.png" width="80%">

In the following figure . (i) if angle BAD = 96^(@) , " find " angle BCD and angle BFE. (ii) Prove that AD is parallel to PE. (##SEL_RKB_ICSE_MAT_X_C17_E02_019_Q01.png" width="80%"> (b) ABCD is a parallelogram. A circle through vertices A and B meets side BC at point P and side AD at point Q . Show that quadrilateral PCDQ is cyclic.

In the given figure angle BAD = 60 ^(@) ,angle ABD = 70^(@) angle BDC = 45^(@) (i) prove that AC is a diameter of the circle (ii) Find angle ACB (##SEL_RKB_ICSE_MAT_X_C17_E02_002_Q01.png" width="80%">

Find PQ , if AB = 150 m, angle P = 30^(@) and angle Q = 45^(@) (ii)

Find PQ , if AB = 150 m, angle P = 30^(@) and angle Q = 45^(@) (i)

In the following figure, AB = EF, BC = DE and angle B = angle E = 90^(@) . Pove that AD = FC.

In the following figure , AB = BC and AD = DE. if angle B = 50^(@) , angle D = 66^(@) and angle GAC = 18^(@) find the measure of angles DAE, BAF and AGF.

Calculate the angles x,y and z if (x)/(3) = (y)/(4) =(z)/(5) (##SEL_RKB_ICSE_MAT_X_C17_E02_042_Q01.png" width="80%">

In the followoing figure , AD is the diameter of the circle with centre O. Chords AB,BC and CD are equal .If angle DEF = 110 ^(@) , Calculate : (i) angle AEF . (ii) angle FAB (##SEL_RKB_ICSE_MAT_X_C17_E03_002_Q01.png" width="80%">

Two unequal circles with centres A and B intersect each other at points C and D. The centre B of the smaller circles lies on the circumference of the bigger circle with centre A. If angle CMD = x^(@) , find in terms of x, the measure of angle DAC . (##SEL_RKB_ICSE_MAT_X_C17_E01_013_Q01.png" width="80%">

ICSE-CHAPTER REVISION (STAGE 2) -TRIGONOMETRY
  1. If cot ^(2) A - 3 =0 find : cos 3A

    Text Solution

    |

  2. The length of a string between a kite and a point on the ground is 90 ...

    Text Solution

    |

  3. In the following figure , angle B = 90 ^(@) angle ADB = 30 ^(@) and a...

    Text Solution

    |

  4. Evaluate : (cos 58 ^(@))/(sin 32^(@)) +(sin 22^(@))/(cos 68^(@)) - ...

    Text Solution

    |

  5. Evaluate without using trigonometric tables. 2(("tan" 35^(@))/("cot"...

    Text Solution

    |

  6. Evaluate : sec 26^(@) sin 64^(@) + (cosec 33^(@))/(sec 57^(@))

    Text Solution

    |

  7. Evaluate ( 5 sin 66 ^(@))/( cos 24 ^(@)) -( 2 cot 85^(@))/(tan 5^(@...

    Text Solution

    |

  8. Evaluate cos 40 ^(@) cosec 50 ^(@)+ sin 50 ^(@) sec 40 ^(@)

    Text Solution

    |

  9. Evaluate sin 27 ^(@) sin 63 ^(@) - cos 63^(@) cos 27 ^(@)

    Text Solution

    |

  10. Evaluate : 3(sin 72^(@))/(cos 18^(@))-(sec 32^(@))/(cosec 58^(@))

    Text Solution

    |

  11. Evaluate 3 cos 80 ^(@) cosec 10 ^(@) + 2 cos 59 ^(@) cosec 31 ^(@...

    Text Solution

    |

  12. Evaluate : (cos 75^(@))/ (sin 15^(@)) + (sin 12^(@))/ (cos 78^(@)) -...

    Text Solution

    |

  13. Prove that : sec ^(2) (90 ^(@) - theta) - (1)/(cot ^(2) ( 90 ^(...

    Text Solution

    |

  14. Find theta; if sin(theta + 36^@) = cos theta; where theta + 36^@ is a...

    Text Solution

    |

  15. If in Delta ABC , angle C = 90 ^(@) prove that: ( 1+ tan A)/(1- ...

    Text Solution

    |

  16. If cot A = (12)/(5) , verify tan ^(2) A - sin ^(2) A = sin ^(4) ...

    Text Solution

    |

  17. In a right triangle ABC, right angled at B . The ratio of AB to AC = ...

    Text Solution

    |

  18. If cot theta = (3)/(4) find the value of : ( sin theta- cos theta...

    Text Solution

    |

  19. If cosec A = sqrt3 , find the value of: (2 sin ^(2)A + 3 cot ^(2)...

    Text Solution

    |

  20. In an acute angled triangle A B C , if tan(A+B-C)=1 and ,sec(B+C-A)=2,...

    Text Solution

    |