Home
Class 9
MATHS
In the following figures AB = 4 m and E...

In the following figures AB = 4 m and ED = 3m.
If ` sin alpha = (3)/(5) and cos beta = (12)/(13) ` find the length of BD

Text Solution

AI Generated Solution

The correct Answer is:
To find the length of BD, we will break the problem down into steps involving triangles ABC and CED. ### Step 1: Identify the given values - AB = 4 m - ED = 3 m - sin(α) = 3/5 - cos(β) = 12/13 ### Step 2: Calculate the length of BC using triangle ABC From the definition of sine: \[ \sin(α) = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{3}{5} \] Here, the opposite side (perpendicular) is 3, and the hypotenuse is 5. Using the Pythagorean theorem: \[ \text{Base}^2 + \text{Perpendicular}^2 = \text{Hypotenuse}^2 \] Let the base be B. Then: \[ B^2 + 3^2 = 5^2 \] \[ B^2 + 9 = 25 \] \[ B^2 = 16 \] \[ B = \sqrt{16} = 4 \] ### Step 3: Calculate BC using tan(α) Using the definition of tangent: \[ \tan(α) = \frac{\text{Opposite}}{\text{Base}} = \frac{3}{4} \] In triangle ABC: \[ \tan(α) = \frac{AB}{BC} = \frac{4}{BC} \] Setting the two equal: \[ \frac{4}{BC} = \frac{3}{4} \] Cross-multiplying gives: \[ 4 \cdot 4 = 3 \cdot BC \] \[ 16 = 3 \cdot BC \] \[ BC = \frac{16}{3} \text{ m} \] ### Step 4: Calculate the length of CD using triangle CED From the definition of cosine: \[ \cos(β) = \frac{\text{Base}}{\text{Hypotenuse}} = \frac{12}{13} \] Here, the base is 12, and the hypotenuse is 13. Using the Pythagorean theorem: \[ \text{Perpendicular}^2 + \text{Base}^2 = \text{Hypotenuse}^2 \] Let the perpendicular be P. Then: \[ P^2 + 12^2 = 13^2 \] \[ P^2 + 144 = 169 \] \[ P^2 = 25 \] \[ P = \sqrt{25} = 5 \] ### Step 5: Calculate CD using tan(β) Using the definition of tangent: \[ \tan(β) = \frac{\text{Opposite}}{\text{Base}} = \frac{5}{12} \] In triangle CED: \[ \tan(β) = \frac{ED}{CD} = \frac{3}{CD} \] Setting the two equal: \[ \frac{3}{CD} = \frac{5}{12} \] Cross-multiplying gives: \[ 3 \cdot 12 = 5 \cdot CD \] \[ 36 = 5 \cdot CD \] \[ CD = \frac{36}{5} \text{ m} \] ### Step 6: Find the length of BD Now, we can find BD by adding BC and CD: \[ BD = BC + CD = \frac{16}{3} + \frac{36}{5} \] To add these fractions, we need a common denominator. The LCM of 3 and 5 is 15. \[ BD = \frac{16 \cdot 5}{15} + \frac{36 \cdot 3}{15} = \frac{80}{15} + \frac{108}{15} = \frac{188}{15} \text{ m} \] ### Step 7: Convert to mixed fraction \[ \frac{188}{15} = 12 \frac{8}{15} \text{ m} \] Thus, the length of BD is: \[ \text{BD} = 12 \frac{8}{15} \text{ m} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise CO- ORDINATE GEOMETRY |5 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise GRAPHICAL SOLUTIONS |3 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise SOLIDS |7 Videos
  • AREA THEOREMS

    ICSE|Exercise Exercies 16(C )|22 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos

Similar Questions

Explore conceptually related problems

If tan x^(@) = (5)/(12), tan y = (3)/(4) and AB = 48 m. Find the length of CD.

If tan x^@ = (5)/(12), tan y^(@) = (3)/(4) and AB = 48 m, find the length of CD.

If alpha=sin x cos^(3) x and beta=cos x sin^(3) x , then :

sin alpha+sin beta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value of cos(alpha+beta) is

sin alpha+sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) the value of sin(alpha+beta)

If sin alpha cos beta=-(1)/(2) then find the range of values of cos alpha sin beta

If alpha and beta are acute angles and sin alpha = (3)/(5) , sin beta = (8)/( 17), find the values of sin ( alpha + beta), cos (alpha pm beta), and tan ( alpha pm beta).

Express the following in a + ib form: ((cos alpha + i sin alpha)^(4))/((sin beta + i cos beta)^(5))

sin alpha+ sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value of tan (alpha+beta) is

Find the value of sin (alpha + beta) , cos (alpha + beta) , and tan (alpha + beta), given sin alpha = (3)/(5) , cos beta = (5)/(13), alpha and beta in Quadrant I.

ICSE-CHAPTER REVISION (STAGE 2) -TRIGONOMETRY
  1. Evaluate : (cos 58 ^(@))/(sin 32^(@)) +(sin 22^(@))/(cos 68^(@)) - ...

    Text Solution

    |

  2. Evaluate without using trigonometric tables. 2(("tan" 35^(@))/("cot"...

    Text Solution

    |

  3. Evaluate : sec 26^(@) sin 64^(@) + (cosec 33^(@))/(sec 57^(@))

    Text Solution

    |

  4. Evaluate ( 5 sin 66 ^(@))/( cos 24 ^(@)) -( 2 cot 85^(@))/(tan 5^(@...

    Text Solution

    |

  5. Evaluate cos 40 ^(@) cosec 50 ^(@)+ sin 50 ^(@) sec 40 ^(@)

    Text Solution

    |

  6. Evaluate sin 27 ^(@) sin 63 ^(@) - cos 63^(@) cos 27 ^(@)

    Text Solution

    |

  7. Evaluate : 3(sin 72^(@))/(cos 18^(@))-(sec 32^(@))/(cosec 58^(@))

    Text Solution

    |

  8. Evaluate 3 cos 80 ^(@) cosec 10 ^(@) + 2 cos 59 ^(@) cosec 31 ^(@...

    Text Solution

    |

  9. Evaluate : (cos 75^(@))/ (sin 15^(@)) + (sin 12^(@))/ (cos 78^(@)) -...

    Text Solution

    |

  10. Prove that : sec ^(2) (90 ^(@) - theta) - (1)/(cot ^(2) ( 90 ^(...

    Text Solution

    |

  11. Find theta; if sin(theta + 36^@) = cos theta; where theta + 36^@ is a...

    Text Solution

    |

  12. If in Delta ABC , angle C = 90 ^(@) prove that: ( 1+ tan A)/(1- ...

    Text Solution

    |

  13. If cot A = (12)/(5) , verify tan ^(2) A - sin ^(2) A = sin ^(4) ...

    Text Solution

    |

  14. In a right triangle ABC, right angled at B . The ratio of AB to AC = ...

    Text Solution

    |

  15. If cot theta = (3)/(4) find the value of : ( sin theta- cos theta...

    Text Solution

    |

  16. If cosec A = sqrt3 , find the value of: (2 sin ^(2)A + 3 cot ^(2)...

    Text Solution

    |

  17. In an acute angled triangle A B C , if tan(A+B-C)=1 and ,sec(B+C-A)=2,...

    Text Solution

    |

  18. Prove that sin 30 ^(@) = (1)/(2).

    Text Solution

    |

  19. If tan (A-B) = (1)/(sqrt3) and sin A = (1)/(sqrt2) find the value o...

    Text Solution

    |

  20. In the following figures AB = 4 m and ED = 3m. If sin alpha = (3)...

    Text Solution

    |