Home
Class 9
MATHS
Simplify : (x^((1)/(3)) - x^(-(1)/(3)...

Simplify :
` (x^((1)/(3)) - x^(-(1)/(3)))(x^((2)/(3)) +1+x^(-(2)/(3)))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( (x^{\frac{1}{3}} - x^{-\frac{1}{3}})(x^{\frac{2}{3}} + 1 + x^{-\frac{2}{3}}) \), we will follow these steps: ### Step 1: Identify the components of the expression We have two parts in the expression: 1. \( A = x^{\frac{1}{3}} - x^{-\frac{1}{3}} \) 2. \( B = x^{\frac{2}{3}} + 1 + x^{-\frac{2}{3}} \) ### Step 2: Rewrite the second part \( B \) We can rewrite \( B \) as: \[ B = x^{\frac{2}{3}} + 1 + x^{-\frac{2}{3}} = x^{\frac{2}{3}} + 1 + \frac{1}{x^{\frac{2}{3}}} \] ### Step 3: Recognize the structure of \( B \) Notice that \( B \) can be expressed as: \[ B = (x^{\frac{2}{3}} + \frac{1}{x^{\frac{2}{3}}}) + 1 \] Let \( y = x^{\frac{1}{3}} \). Then \( y^2 = x^{\frac{2}{3}} \) and \( \frac{1}{y^2} = x^{-\frac{2}{3}} \). Thus, \[ B = y^2 + 1 + \frac{1}{y^2} \] ### Step 4: Simplify \( B \) Using the identity \( a^2 + b^2 + 1 = (a+b)^2 - ab \), we can rewrite \( B \): \[ B = (y + \frac{1}{y})^2 - 2 \] where \( a = y \) and \( b = \frac{1}{y} \). ### Step 5: Expand the product \( A \cdot B \) Now we multiply \( A \) and \( B \): \[ A \cdot B = (y - \frac{1}{y})((y + \frac{1}{y})^2 - 2) \] ### Step 6: Expand further Using the difference of squares: \[ A \cdot B = (y - \frac{1}{y})(y^2 + 2 + \frac{1}{y^2} - 2) = (y - \frac{1}{y})(y^2 + \frac{1}{y^2}) \] ### Step 7: Use the identity for cubes Recognize that: \[ y^3 - \frac{1}{y^3} = (y - \frac{1}{y})\left((y^2 + \frac{1}{y^2}) + 1\right) \] Thus, \[ A \cdot B = y^3 - \frac{1}{y^3} \] ### Step 8: Substitute back for \( y \) Substituting back \( y = x^{\frac{1}{3}} \): \[ y^3 - \frac{1}{y^3} = x - \frac{1}{x} \] ### Final Answer Therefore, the simplified expression is: \[ \boxed{x - \frac{1}{x}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise LOGARITHM |9 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise TRIANGLES |19 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise SIMUTANEOUS EQUATIONS |11 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos
  • CIRCLE

    ICSE|Exercise EXERCISE 17(D)|12 Videos

Similar Questions

Explore conceptually related problems

Simplify: (3x-2)(x-1)(3x+5)

Simplify: (5x+3)(x-1)(3x-2)

Simplify : -3(1-x^(2)) - 2{x^(2) - (3-2x^(2))}

Simplify : 7x -[2-3(1-3x)]

Simplify: (3x-2)(2x-3)+\ (5x-3)(x+1)

Simplify: (3x+2)(2x+3)-(4x-3)(2x-1)

Simplify: x^2(x^2+1)-x^3(x+1)-x(x^3-x)

Simplify: (x^3-2x^2+3x-4)(x-1)-\ (2x-3)(x^2-x+1)

Simplify: x^2-3x+5-1/2(3x^2-5x+7)

Simplify: (x+2/x)^3+\ (x-2/x)^3