Home
Class 9
MATHS
Find the value of a, ( a ne integer ) ...

Find the value of a, ` ( a ne ` integer ) if :
` 2^(a-5) xx 6^(2a-4) = (1)/( 12^(4) xx 2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2^{(a-5)} \times 6^{(2a-4)} = \frac{1}{12^4 \times 2} \), we will follow these steps: ### Step 1: Rewrite the right-hand side We start by rewriting the right-hand side of the equation. We know that \( 12 = 2^2 \times 3 \), so we can express \( 12^4 \) as: \[ 12^4 = (2^2 \times 3)^4 = 2^8 \times 3^4 \] Thus, we can rewrite the right-hand side: \[ 12^4 \times 2 = 2^8 \times 3^4 \times 2 = 2^9 \times 3^4 \] Now, the equation becomes: \[ 2^{(a-5)} \times 6^{(2a-4)} = \frac{1}{2^9 \times 3^4} \] ### Step 2: Rewrite \( 6^{(2a-4)} \) Next, we rewrite \( 6^{(2a-4)} \) in terms of its prime factors: \[ 6 = 2 \times 3 \implies 6^{(2a-4)} = (2 \times 3)^{(2a-4)} = 2^{(2a-4)} \times 3^{(2a-4)} \] Now substituting this back into the equation gives us: \[ 2^{(a-5)} \times (2^{(2a-4)} \times 3^{(2a-4)}) = \frac{1}{2^9 \times 3^4} \] This simplifies to: \[ 2^{(a-5 + 2a-4)} \times 3^{(2a-4)} = \frac{1}{2^9 \times 3^4} \] Combining the powers of 2: \[ 2^{(3a-9)} \times 3^{(2a-4)} = \frac{1}{2^9 \times 3^4} \] ### Step 3: Express the right-hand side with negative exponents We can express the right-hand side using negative exponents: \[ \frac{1}{2^9 \times 3^4} = 2^{-9} \times 3^{-4} \] Now we have: \[ 2^{(3a-9)} \times 3^{(2a-4)} = 2^{-9} \times 3^{-4} \] ### Step 4: Set the exponents equal to each other Since the bases are the same, we can set the exponents equal to each other: 1. For the base 2: \[ 3a - 9 = -9 \] 2. For the base 3: \[ 2a - 4 = -4 \] ### Step 5: Solve the equations **From the first equation:** \[ 3a - 9 = -9 \implies 3a = 0 \implies a = 0 \] **From the second equation:** \[ 2a - 4 = -4 \implies 2a = 0 \implies a = 0 \] ### Conclusion Both equations give us the same solution: \[ a = 0 \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise LOGARITHM |9 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise TRIANGLES |19 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise SIMUTANEOUS EQUATIONS |11 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos
  • CIRCLE

    ICSE|Exercise EXERCISE 17(D)|12 Videos

Similar Questions

Explore conceptually related problems

Find the value of : 2x xx 3yz xx 4zx

3.Find the value of (5^0 +4^-1) times 2^2

Find the values of each of the following : (2^(-1)xx\ 4^(-1))-:2^2 (ii) (5^(-1)xx\ 2^(-1))-:6^(-1)

find the value of n, given : (4^(n-2)xx2^(n-5)xx6xx2^(n+3))/(3xx6^(2))=(4)/(18)

Find the value of : 1/2 p^(2) xx 4p^(2)q xx(-3 p)

Find the value of. (i) (3^@+4^(-1)) xx 2^2 (ii) (2^(-1)xx 4^(-1))-: 2^(-1) (iii) (1/2)^-2 + (1/3)^-2 + (1/4)^-2 (iv) (3^-1 + 4^-1+ 5^(-1))^0 (v) {((-2)/3)^-2}^2

Find the value of n : (2^(3)xx5^(n+1)xx10^(2)xx5^(n-1))/(125xx5^(n-2)xx2^(7))=(25)/(4)

Find the value of the (-4)^(3)xx5^(2)xx6^(0) .

Find the value of each of the following: (i)((-1)/2)^2xx2^3xx(3/4)^2 (ii) ((-3)/5)^4xx(4/9)^4xx((-15)/(18))^2

Find the number from each of the following expanded forms : , (a) 8 xx 10^4 + 6 xx 10^3 + 0 xx 10^2 + 4 xx 10^1 + 5 xx 10^0 , (b) 4 xx 10^5 + 5 xx 10^3 + 3 xx 10^2 + 2 xx 10^0 , (c) 3 xx 10^4 + 7 xx 10^2 + 5 xx 10^0