Home
Class 10
MATHS
(i) If x = (6ab)/(a + b), find the value...

(i) If `x = (6ab)/(a + b)`, find the value of :
`(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b)`.
(ii) `a = (4sqrt(6))/(sqrt(2) + sqrt(3))`, find the value of :
`(a + 2sqrt(2))/(a - 2sqrt(2)) + (a + 2sqrt(3))/(a - 2sqrt(3))`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problems step by step, let's break down each part of the question. ### Part (i) Given: \[ x = \frac{6ab}{a + b} \] We need to find the value of: \[ \frac{x + 3a}{x - 3a} + \frac{x + 3b}{x - 3b} \] **Step 1: Express \( \frac{x + 3a}{x - 3a} \) in terms of \( a \) and \( b \)** From the given \( x \): \[ \frac{x}{3a} = \frac{2b}{a + b} \] Using the property of componendo and dividendo: \[ \frac{x + 3a}{x - 3a} = \frac{\frac{x}{3a} + 1}{\frac{x}{3a} - 1} = \frac{\frac{2b}{a + b} + 1}{\frac{2b}{a + b} - 1} \] This simplifies to: \[ \frac{2b + (a + b)}{2b - (a + b)} = \frac{a + 3b}{b - a} \] **Step 2: Express \( \frac{x + 3b}{x - 3b} \) similarly** From the same \( x \): \[ \frac{x}{3b} = \frac{2a}{a + b} \] Using the same property: \[ \frac{x + 3b}{x - 3b} = \frac{\frac{x}{3b} + 1}{\frac{x}{3b} - 1} = \frac{\frac{2a}{a + b} + 1}{\frac{2a}{a + b} - 1} \] This simplifies to: \[ \frac{2a + (a + b)}{2a - (a + b)} = \frac{3a + b}{a - b} \] **Step 3: Add the two fractions** Now we add the two results: \[ \frac{a + 3b}{b - a} + \frac{3a + b}{a - b} \] Notice that \( a - b = - (b - a) \): \[ = \frac{a + 3b}{b - a} - \frac{3a + b}{b - a} \] \[ = \frac{(a + 3b) - (3a + b)}{b - a} \] \[ = \frac{-2a + 2b}{b - a} \] \[ = \frac{2(b - a)}{b - a} = 2 \] Thus, the final answer for part (i) is: \[ \boxed{2} \] --- ### Part (ii) Given: \[ a = \frac{4\sqrt{6}}{\sqrt{2} + \sqrt{3}} \] We need to find the value of: \[ \frac{a + 2\sqrt{2}}{a - 2\sqrt{2}} + \frac{a + 2\sqrt{3}}{a - 2\sqrt{3}} \] **Step 1: Rationalize \( a \)** To rationalize \( a \): \[ a = \frac{4\sqrt{6}(\sqrt{3} - \sqrt{2})}{(\sqrt{2} + \sqrt{3})(\sqrt{3} - \sqrt{2})} \] The denominator becomes: \[ 3 - 2 = 1 \] Thus, \[ a = 4\sqrt{6}(\sqrt{3} - \sqrt{2}) = 4\sqrt{18} - 4\sqrt{12} = 12\sqrt{2} - 8\sqrt{3} \] **Step 2: Calculate \( a + 2\sqrt{2} \) and \( a - 2\sqrt{2} \)** \[ a + 2\sqrt{2} = (12\sqrt{2} - 8\sqrt{3}) + 2\sqrt{2} = 14\sqrt{2} - 8\sqrt{3} \] \[ a - 2\sqrt{2} = (12\sqrt{2} - 8\sqrt{3}) - 2\sqrt{2} = 10\sqrt{2} - 8\sqrt{3} \] **Step 3: Calculate \( a + 2\sqrt{3} \) and \( a - 2\sqrt{3} \)** \[ a + 2\sqrt{3} = (12\sqrt{2} - 8\sqrt{3}) + 2\sqrt{3} = 12\sqrt{2} - 6\sqrt{3} \] \[ a - 2\sqrt{3} = (12\sqrt{2} - 8\sqrt{3}) - 2\sqrt{3} = 12\sqrt{2} - 10\sqrt{3} \] **Step 4: Form the fractions** Now we form the fractions: \[ \frac{14\sqrt{2} - 8\sqrt{3}}{10\sqrt{2} - 8\sqrt{3}} + \frac{12\sqrt{2} - 6\sqrt{3}}{12\sqrt{2} - 10\sqrt{3}} \] **Step 5: Simplify each fraction** Factor out common terms and simplify: 1. For the first fraction, factor out 2: \[ = \frac{2(7\sqrt{2} - 4\sqrt{3})}{2(5\sqrt{2} - 4\sqrt{3})} = \frac{7\sqrt{2} - 4\sqrt{3}}{5\sqrt{2} - 4\sqrt{3}} \] 2. For the second fraction: \[ = \frac{12\sqrt{2} - 6\sqrt{3}}{12\sqrt{2} - 10\sqrt{3}} \] **Step 6: Add the two fractions** Combine the fractions: \[ = \frac{(7\sqrt{2} - 4\sqrt{3})(12\sqrt{2} - 10\sqrt{3}) + (12\sqrt{2} - 6\sqrt{3})(5\sqrt{2} - 4\sqrt{3})}{(5\sqrt{2} - 4\sqrt{3})(12\sqrt{2} - 10\sqrt{3})} \] After simplification, we find that the sum equals 2. Thus, the final answer for part (ii) is: \[ \boxed{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • RATIO AND PROPORTION (INCLUDING PROPERTIES AND USES)

    ICSE|Exercise Exercise 7(D)|27 Videos
  • RATIO AND PROPORTION (INCLUDING PROPERTIES AND USES)

    ICSE|Exercise QUESTIONS|30 Videos
  • RATIO AND PROPORTION (INCLUDING PROPERTIES AND USES)

    ICSE|Exercise Exercise 7(B)|17 Videos
  • RATIO AND PROPORTION

    ICSE|Exercise MULTIPLE CHOICE QUESTION|61 Videos
  • REFLECTION

    ICSE|Exercise QUESTION|1 Videos

Similar Questions

Explore conceptually related problems

If a =( 4sqrt(6))/(sqrt(2)+sqrt(3)) then the value of (a+2sqrt(2))/(a-2sqrt(2))+(a+2sqrt(3))/(a-2sqrt(3))

Find the values of a and b in each of the (3)/(sqrt(3)-sqrt(2))= a sqrt(3)-bsqrt(2)

(4(sqrt(6) + sqrt(2)))/(sqrt(6) - sqrt(2)) - (2 + sqrt(3))/(2 - sqrt(3)) =

Find the values of a and b in each of the (5+3sqrt(2))/(5-3sqrt(2))= a+b sqrt(2)

Find the values of a and b if : (2sqrt(3)+3sqrt(2))/(2sqrt(3)-3sqrt(2))=a+bsqrt(6)

If x = sqrt(3)- sqrt(2) find the value of x+(1)/(x)

If x = 2 - sqrt 3 , find the value of (x-1/x)^3

If x = sqrt(3)- sqrt(2) find the value of x^(3)+ (1)/(x^(3))

If x = sqrt(3)- sqrt(2) find the value of x^(2)+ (1)/(x^(2))

If x=3+2sqrt(2) , then the value of (sqrt(x)-1/sqrt(x)) is