Home
Class 10
MATHS
If a, b and c are in continued proportio...

If `a`, `b` and `c` are in continued proportion, prove that :
(i) `(a^(2) + ab + b^(2))/(b^(2) + bc + c^(2)) = (a)/(c)
(ii) (a^(2) + b^(2) + c^(2))/((a + b + c)^(2)) = (a - b + c)/(a + b + c)`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • RATIO AND PROPORTION (INCLUDING PROPERTIES AND USES)

    ICSE|Exercise Exercise 7(D)|27 Videos
  • RATIO AND PROPORTION (INCLUDING PROPERTIES AND USES)

    ICSE|Exercise QUESTIONS|30 Videos
  • RATIO AND PROPORTION (INCLUDING PROPERTIES AND USES)

    ICSE|Exercise Exercise 7(B)|17 Videos
  • RATIO AND PROPORTION

    ICSE|Exercise MULTIPLE CHOICE QUESTION|61 Videos
  • REFLECTION

    ICSE|Exercise QUESTION|1 Videos

Similar Questions

Explore conceptually related problems

If a, b, c are in continued proportion, prove that (a+b+c)(a-b+c)=a^(2)+b^(2)+c^(2) .

(i) If a , b , c are in continued proportion, show that : (a^(2) + b^(2))/(b(a+c)) = (b(a + c))/(b^(2) + c^(2)) . (ii) If a , b , c are in continued proportion and a(b - c) = 2b , prove that : a - c = (2(a + b))/(a) . (iii) If (a)/(b) = (c)/(d) show that : (a^(3)c + ac^(3))/(b^(3)d +bd^(3)) = ((a + c)^(4))/((b + d)^(4)) .

If a, b, c are in A.P., then prove that : (i) ab+bc=2b^(2) (ii) (a-c)^(2)=4(b^(2)-ac) (iii) a^(2)+c^(2)+4ca=2(ab+bc+ca).

If a, b, c ,d be in G.P. , show that (i) (b -c)^(2) + (c - a)^(2) +(d -b)^(2) = (a - d)^(2) (ii) a^(2) + b^(2) + c^(2) , ab + bc + cd , b^(2) + c^(2) + d^(2) are in G.P.

Prove that : |{:(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab):}|=(a-b)(b-c)(c-a)(ab+bc+ca)

If a ,\ b ,\ c are in proportion, then (a) a^2=b c (b) b^2=a c (c) c^2=a b (d) None of these

(i) a , b, c are in H.P. , show that (b + a)/(b -a) + (b + c)/(b - c) = 2 (ii) If a^(2), b^(2), c^(2) are A.P. then b + c , c + a , a + b are in H.P. .

if (a^(2) + c^(2)) , (ab + cd) and (b^(2) + d^(2)) are in continued proportion, prove that a , b , c and d are in proportion.

Prove that : |{:(a^(2),b^(2)+c^(2),bc),(b^(2),c^(2)+a^(2),ca),(c^(2),a^(2)+b^(2),ab):}|=-(a-b)(b-c)(c-a)(a+b+c)(a^(2)+b^(2)+c^(2))

Prove that |{:(a,,a^(2),,bc),(b ,,b^(2),,ac),( c,,c^(2),,ab):}| = |{:(1,,1,,1),(a^(2) ,,b^(2),,c^(2)),( a^(3),, b^(3),,c^(3)):}|