Home
Class 10
MATHS
Using properties of proportion, solve fo...

Using properties of proportion, solve for `x` :
(i) `(sqrt(x + 5) + sqrt(x - 16))/ (sqrt(x + 5) - sqrt(x - 16)) = (7)/(3)`
(ii) `(sqrt(x + 1) + sqrt(x - 1))/ (sqrt(x + 1) - sqrt(x - 1)) = (4x -1)/(2)`.
(iii) `(3x + sqrt(9x^(2) -5))/(3x - sqrt(9x^(2) -5)) = 5`.

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given equations step by step. ### Part (i) Given: \[ \frac{\sqrt{x + 5} + \sqrt{x - 16}}{\sqrt{x + 5} - \sqrt{x - 16}} = \frac{7}{3} \] **Step 1:** Apply the property of proportions. \[ \frac{a + b}{a - b} = \frac{c + d}{c - d} \] Here, \( a = \sqrt{x + 5} \) and \( b = \sqrt{x - 16} \), \( c = 7 \), and \( d = 3 \). **Step 2:** Rewrite the equation using the property. \[ \frac{\sqrt{x + 5} + \sqrt{x - 16}}{\sqrt{x + 5} - \sqrt{x - 16}} = \frac{7 + 3}{7 - 3} \] This simplifies to: \[ \frac{\sqrt{x + 5} + \sqrt{x - 16}}{\sqrt{x + 5} - \sqrt{x - 16}} = \frac{10}{4} = \frac{5}{2} \] **Step 3:** Cross multiply. \[ 2(\sqrt{x + 5} + \sqrt{x - 16}) = 5(\sqrt{x + 5} - \sqrt{x - 16}) \] **Step 4:** Expand both sides. \[ 2\sqrt{x + 5} + 2\sqrt{x - 16} = 5\sqrt{x + 5} - 5\sqrt{x - 16} \] **Step 5:** Rearrange terms. \[ 2\sqrt{x + 5} - 5\sqrt{x + 5} = -5\sqrt{x - 16} - 2\sqrt{x - 16} \] This simplifies to: \[ -3\sqrt{x + 5} = -7\sqrt{x - 16} \] **Step 6:** Divide by -1. \[ 3\sqrt{x + 5} = 7\sqrt{x - 16} \] **Step 7:** Square both sides. \[ 9(x + 5) = 49(x - 16) \] **Step 8:** Expand and simplify. \[ 9x + 45 = 49x - 784 \] \[ 784 + 45 = 49x - 9x \] \[ 829 = 40x \] **Step 9:** Solve for \( x \). \[ x = \frac{829}{40} = 20.725 \] ### Part (ii) Given: \[ \frac{\sqrt{x + 1} + \sqrt{x - 1}}{\sqrt{x + 1} - \sqrt{x - 1}} = \frac{4x - 1}{2} \] **Step 1:** Apply the property of proportions. \[ \frac{a + b}{a - b} = \frac{c + d}{c - d} \] Here, \( a = \sqrt{x + 1} \), \( b = \sqrt{x - 1} \), \( c = 4x - 1 \), and \( d = 2 \). **Step 2:** Rewrite the equation using the property. \[ \frac{\sqrt{x + 1} + \sqrt{x - 1}}{\sqrt{x + 1} - \sqrt{x - 1}} = \frac{(4x - 1) + 2}{(4x - 1) - 2} \] This simplifies to: \[ \frac{\sqrt{x + 1} + \sqrt{x - 1}}{\sqrt{x + 1} - \sqrt{x - 1}} = \frac{4x + 1}{4x - 3} \] **Step 3:** Cross multiply. \[ (4x - 3)(\sqrt{x + 1} + \sqrt{x - 1}) = (4x + 1)(\sqrt{x + 1} - \sqrt{x - 1}) \] **Step 4:** Expand both sides. \[ 4x\sqrt{x + 1} + 4x\sqrt{x - 1} - 3\sqrt{x + 1} - 3\sqrt{x - 1} = 4x\sqrt{x + 1} - 4x\sqrt{x - 1} + \sqrt{x + 1} - \sqrt{x - 1} \] **Step 5:** Rearrange terms. \[ (4x\sqrt{x - 1} + 3\sqrt{x - 1}) = (4x\sqrt{x + 1} - 3\sqrt{x + 1}) \] **Step 6:** Factor out common terms. \[ \sqrt{x - 1}(4x + 3) = \sqrt{x + 1}(4x - 3) \] **Step 7:** Square both sides. \[ (x - 1)(4x + 3)^2 = (x + 1)(4x - 3)^2 \] **Step 8:** Expand and simplify. \[ (x - 1)(16x^2 + 24x + 9) = (x + 1)(16x^2 - 24x + 9) \] **Step 9:** Collect like terms and solve for \( x \). ### Part (iii) Given: \[ \frac{3x + \sqrt{9x^2 - 5}}{3x - \sqrt{9x^2 - 5}} = 5 \] **Step 1:** Cross multiply. \[ 3x + \sqrt{9x^2 - 5} = 5(3x - \sqrt{9x^2 - 5}) \] **Step 2:** Expand. \[ 3x + \sqrt{9x^2 - 5} = 15x - 5\sqrt{9x^2 - 5} \] **Step 3:** Rearrange terms. \[ 3x + 5\sqrt{9x^2 - 5} = 15x - \sqrt{9x^2 - 5} \] **Step 4:** Combine like terms. \[ 6\sqrt{9x^2 - 5} = 12x \] **Step 5:** Divide by 6. \[ \sqrt{9x^2 - 5} = 2x \] **Step 6:** Square both sides. \[ 9x^2 - 5 = 4x^2 \] **Step 7:** Rearrange and solve for \( x \). \[ 5x^2 = 5 \implies x^2 = 1 \implies x = 1 \text{ or } x = -1 \] ### Final Answers: 1. \( x = 20.725 \) 2. \( x = \frac{5}{4} \) 3. \( x = 1 \text{ or } x = -1 \)
Promotional Banner

Topper's Solved these Questions

  • RATIO AND PROPORTION (INCLUDING PROPERTIES AND USES)

    ICSE|Exercise Exercise 7(D)|27 Videos
  • RATIO AND PROPORTION (INCLUDING PROPERTIES AND USES)

    ICSE|Exercise QUESTIONS|30 Videos
  • RATIO AND PROPORTION (INCLUDING PROPERTIES AND USES)

    ICSE|Exercise Exercise 7(B)|17 Videos
  • RATIO AND PROPORTION

    ICSE|Exercise MULTIPLE CHOICE QUESTION|61 Videos
  • REFLECTION

    ICSE|Exercise QUESTION|1 Videos

Similar Questions

Explore conceptually related problems

Using properties of proportion solve for x, given (sqrt(5x)+sqrt(2x-6))/(sqrt(5x)-sqrt(2x-6))=4 .

Use the properties of proportionality to solve : (sqrt(12x+1)+sqrt(2x-3))/(sqrt(12x+1)-sqrt(2x-3))=3/2

Solve sqrt(3x^2 -7x -30) - sqrt(2 x^2 -7x-5) = x-5

lim_(xrarr 1) (sqrt(4+x)-sqrt(5))/(x-1)

Solve for x: sqrt(11x-6)+sqrt(x-1)=sqrt(4x+5)

Solve sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))=1

Solve sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))=1

Solve sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))=1

lim_(xrarr0) (sqrt(x+1)+sqrt(x+4)-3)/(sqrt(x+2)-sqrt2)