Home
Class 10
MATHS
If (x^(2) + y^(2))/(x^(2) - y^(2)) = 2(1...

If `(x^(2) + y^(2))/(x^(2) - y^(2)) = 2(1)/(8)`, find :
(i) `(x)/(y)`
(ii) `(x^(3) + y^(3))/(x^(3) - y^(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the approach outlined in the video transcript. ### Given: \[ \frac{x^2 + y^2}{x^2 - y^2} = 2 \frac{1}{8} \] ### Step 1: Convert the mixed fraction to an improper fraction. \[ 2 \frac{1}{8} = \frac{16 + 1}{8} = \frac{17}{8} \] Thus, we rewrite the equation as: \[ \frac{x^2 + y^2}{x^2 - y^2} = \frac{17}{8} \] ### Step 2: Apply the component and dividendo rule. According to the component and dividendo rule: \[ \frac{A + B}{A - B} = \frac{C + D}{C - D} \] We can apply this rule here: \[ \frac{x^2 + y^2 + x^2 - y^2}{x^2 + y^2 - (x^2 - y^2)} = \frac{17 + 8}{17 - 8} \] ### Step 3: Simplify the left-hand side. The left-hand side simplifies to: \[ \frac{2x^2}{2y^2} = \frac{x^2}{y^2} \] ### Step 4: Simplify the right-hand side. The right-hand side simplifies to: \[ \frac{25}{9} \] ### Step 5: Set the two sides equal. Now we have: \[ \frac{x^2}{y^2} = \frac{25}{9} \] ### Step 6: Take the square root of both sides. Taking the square root gives: \[ \frac{x}{y} = \frac{5}{3} \] ### Answer for (i): \[ \frac{x}{y} = \frac{5}{3} \] ### Step 7: Now find \(\frac{x^3 + y^3}{x^3 - y^3}\). Using the identity: \[ \frac{x^3 + y^3}{x^3 - y^3} = \frac{\frac{x}{y}^3 + 1}{\frac{x}{y}^3 - 1} \] ### Step 8: Substitute \(\frac{x}{y} = \frac{5}{3}\). Calculating \(\left(\frac{x}{y}\right)^3\): \[ \left(\frac{5}{3}\right)^3 = \frac{125}{27} \] ### Step 9: Substitute into the identity. Now substituting into the identity: \[ \frac{\frac{125}{27} + 1}{\frac{125}{27} - 1} \] ### Step 10: Simplify the numerator and denominator. Convert 1 to a fraction: \[ 1 = \frac{27}{27} \] Thus, the numerator becomes: \[ \frac{125 + 27}{27} = \frac{152}{27} \] And the denominator becomes: \[ \frac{125 - 27}{27} = \frac{98}{27} \] ### Step 11: Simplify the entire fraction. Now we have: \[ \frac{\frac{152}{27}}{\frac{98}{27}} = \frac{152}{98} \] ### Step 12: Reduce the fraction. Dividing both the numerator and denominator by 2 gives: \[ \frac{76}{49} \] ### Answer for (ii): \[ \frac{x^3 + y^3}{x^3 - y^3} = \frac{76}{49} \] ### Summary of Answers: (i) \(\frac{x}{y} = \frac{5}{3}\) (ii) \(\frac{x^3 + y^3}{x^3 - y^3} = \frac{76}{49}\)
Promotional Banner

Topper's Solved these Questions

  • RATIO AND PROPORTION (INCLUDING PROPERTIES AND USES)

    ICSE|Exercise QUESTIONS|30 Videos
  • RATIO AND PROPORTION (INCLUDING PROPERTIES AND USES)

    ICSE|Exercise Exercise 7(C )|15 Videos
  • RATIO AND PROPORTION

    ICSE|Exercise MULTIPLE CHOICE QUESTION|61 Videos
  • REFLECTION

    ICSE|Exercise QUESTION|1 Videos

Similar Questions

Explore conceptually related problems

If (x^(2)+y^(2))/(x^(2)-y^(2))=17/(8) , using the properties of proportion find the value of : (ii) (x^(3)+y^(3))/(x^(3)-y^(3))

Evaluate (3x^(4)y^(2))(2x^(2)y^(3)) for x = 1 and y = 2.

(i) If x and y both are positive and (2x^(2) - 5y^(2)) : xy = 1 : 3 , find x : y . (ii) Find x , if 16((a - x)/(a + x))^(3) = (a + x)/(a - x) .

x-y relation is given by y=x^(n) calculate the value of n in the following :- (i) y=(x^(2))/(x^(2//3)) (ii) y=(x^(3//2))/(x^(1)) (iii) y=(x^(1//2))/(x^(1//2)) (iv) y=(x^(3//2))/(sqrt(x))

Verify : (i) x^3+y^3=(x+y)(x^2-x y+y^2) (ii) x^3-y^3=(x-y)(x^2+x y+y^2)

If 7x - 15y = 4x + y , find the value of x: y . Hence, use componendo and dividendo to find the values of : (i) (9x + 5y)/(9x - 5y) (iI) (3x^(2) + 2y^(2))/(3x^(2) - 2y^(2))

If y^3-3x y^2=x^3+3x^2\ y , find (dy)/(dx)

For x = 2 and y = -3, verify the following: (x+y)^(3)=x^(3)+y^(3)+3x^(2)y+3xy^(2)

If the hyperbola xy=c^(2) intersects the circle x^(2)+y^(2)=a^(2)" is four points "P(x_(1),y_(1)), Q(x_(2),y_(2)), R(x_(3),y_(3)) and S(x_(4),y_(4)) then show that (i) x_(1)+x_(2)+x_(3)+x_(4)=0 (ii) y_(1)+y_(2)+y_(3)+y_(4)=0 (iii) x_(1)x_(2)x_(3)x_(4)=c^(4) (iv) y_(1)y_(2)y_(3)y_(4)=c^(4)

ICSE-RATIO AND PROPORTION (INCLUDING PROPERTIES AND USES)-Exercise 7(D)
  1. If 15(2x^(2) - y^(2)) = 7xy, find x : y, if x and y both are positive...

    Text Solution

    |

  2. Find the : (i) fourth proportional to 2xy, x^(2) and y^(2). (i...

    Text Solution

    |

  3. Find two numbers such that the mean proportional between them is 14 an...

    Text Solution

    |

  4. If x and y be unequal and x : y is the duplicate ratio of x + z and y ...

    Text Solution

    |

  5. If x = (2ab)/(a + b), find the value of : (x + a)/(x - a) + (x + b)/(x...

    Text Solution

    |

  6. If (4a + 9b) (4c - 9d) = (4a - 9b) (4c + 9d), prove that : a : b = c :...

    Text Solution

    |

  7. If (a)/(b) = (c)/(d), show that : (a + b) : (c + d) = sqrt(a^(2) + b^...

    Text Solution

    |

  8. There are 36 members in a student council in a school and the ratio of...

    Text Solution

    |

  9. If 7x - 15y = 4x + y, find the value of x: y. Hence, use componendo an...

    Text Solution

    |

  10. If (4m + 3n)/(4m - 3n) = (7)/(4) use properties of proportion to find ...

    Text Solution

    |

  11. If x, y, z are in continued proportion, prove that : ((x + y)^(2))/((y...

    Text Solution

    |

  12. Given x = (sqrt(a^(2) + b^(2)) + sqrt(a^(2) - b^(2)))/(sqrt(a^(2) + b...

    Text Solution

    |

  13. If (x^(2) + y^(2))/(x^(2) - y^(2)) = 2(1)/(8), find : (i) (x)/(y)...

    Text Solution

    |

  14. Using componendo and dividendo, find the value of x if (sqrt(3x+4)+sqr...

    Text Solution

    |

  15. If x=(sqrt(a+1)+sqrt(a-1))/(sqrt(a+1)-sqrt(a-1)), using properties of ...

    Text Solution

    |

  16. Given (x^(3)+12x)/(6x^(2)+8)=(y^(3)+27y)/(9y^(2)+27). Using componendo...

    Text Solution

    |

  17. If x/(a)=y/(b)=z/(c) show that x^(3)/(a^(3))+y^(3)/(b^(3))+z^(3)/(c^(3...

    Text Solution

    |

  18. If b is the mean proportion between a and c, show that : (a^(4)+a^(2...

    Text Solution

    |

  19. If (7m+2n)/(7m-2n)=5/(3) use properties of proportion to find (i) m...

    Text Solution

    |

  20. (i) If x and y both are positive and (2x^(2) - 5y^(2)) : xy = 1 : 3, f...

    Text Solution

    |