Home
Class 10
MATHS
Prove that : 2 sin^(2) A + cos^(4) A =...

Prove that :
`2 sin^(2) A + cos^(4) A = 1 + sin^(4) A`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL IDENTITIES

    ICSE|Exercise EXERCISE 21 (C)|34 Videos
  • TRIGONOMETRICAL IDENTITIES

    ICSE|Exercise EXERCISE 21 (D)|22 Videos
  • TRIGONOMETRICAL IDENTITIES

    ICSE|Exercise QUESTIONS|22 Videos
  • TANGENTS AND INTERSECTING CHORDS

    ICSE|Exercise EXERCISE 18 (C)|42 Videos

Similar Questions

Explore conceptually related problems

Prove that : cos^(4) A - sin^(4) A = 2 cos^(2) A - 1

Prove the following identities : (1 - 2 sin^(2) A)^(2)/(cos^(4) A - sin^(4) A) = 2 cos^(2) A - 1

Prove the following identities : sin^(4) A - cos^(4) A = 2 sin^(2) A - 1

Prove that: Sin 4A = 4 cos^3 A sin A - 4 sin^3 A cos A

Prove that : (sin A)/ (1 + cos A) + (1 + cos A)/ (sin A) = 2 cosec A

Prove that : (1)/ (sin A - cos A) - (1)/ (sin A + cos A) = (2 cos A)/(2 sin^(2) A - 1)

Prove that : (cos x - cos y)^(2) + (sin x - sin y)^(2) = 4 sin^(2) ((x - y)/(2))

Prove that : 2 sin^2 theta + 4 cos (theta + alpha) sin alpha sin theta + cos 2 (alpha + theta) is independent of theta.

If A+B+C=pi , Prove that : sin( A/2) + sin( B/2) + sin(C/2) =1 + 4 sin( (B+C)/(4)) sin( (C+A)/(4)) sin( (A+B)/(4))

Prove that : (1+sin 2A)/(cos 2A) = (cos A + sin A)/(cos A - sin A) = tan (pi/4 + A)