Home
Class 10
MATHS
If x = r sin A cos B, y = r sin A sin ...

If
`x = r sin A cos B, y = r sin A sin B and z = r cos A,`
then prove that :
`x^(2) + y^(2) + z^(2) = r^(2)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL IDENTITIES

    ICSE|Exercise EXERCISE 21 (C)|34 Videos
  • TRIGONOMETRICAL IDENTITIES

    ICSE|Exercise EXERCISE 21 (D)|22 Videos
  • TRIGONOMETRICAL IDENTITIES

    ICSE|Exercise QUESTIONS|22 Videos
  • TANGENTS AND INTERSECTING CHORDS

    ICSE|Exercise EXERCISE 18 (C)|42 Videos

Similar Questions

Explore conceptually related problems

If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x^(2) + y^(2) + z^(2) = r^(2)

If x cos A + y sin A = m and x sin A - y cos A = n, then prove that : x^(2) + y^(2) = m^(2) + n^(2)

If x = a sec A cos B, y = b sec A sin B and z = c tan A, show that : (x^(2))/ (a^(2)) + (y^(2))/ (b^(2)) - (z^(2))/(c^(2)) = 1

If x=rsinAcosC ,\ \ y=rsinAsinC and z=rcosA , prove that r^2=x^2+y^2+z^2

If x=rsinAcosC ,\ \ y=rsinAsinC and z=rcosA , prove that r^2=x^2+y^2+z^2

If y= A sin x+ B cos x , then prove that (d^2y)/(dx^2)+y=0 .

If sin −1 x+sin −1 y+sin −1 z=π, prove that x 1−x 2 ​ +y 1−y 2 ​ +z 1−z 2 ​ =2xyz.

If x=rsinthetacosvarphi , y=rsinthetasinvarphi and z=rcostheta , then (a) x^2+y^2+z^2=r^2 (b) x^2+y^2-z^2=r^2 (c) x^2-y^2+z^2=r^2 (d) z^2+y^2-x^2=r^2

If sin^2x + sin^2y < 1 ; x, y in R then prove that sin^-1(tanx . tany) in (-pi/2, pi/2) .

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , prove that x^(2)-y^(2)+z^(2)-2xz sqrt(1-y^(2))=0