Home
Class 10
MATHS
Find the value of x, if : cos x = cos ...

Find the value of x, if :
`cos x = cos 60^(@) cos 30^(@) + sin 60^(@) sin 30^(@)`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRICAL IDENTITIES

    ICSE|Exercise EXERCISE 21 (E)|62 Videos
  • TANGENTS AND INTERSECTING CHORDS

    ICSE|Exercise EXERCISE 18 (C)|42 Videos

Similar Questions

Explore conceptually related problems

Find (in each case, given below) the value of x, if : cos x = cos 60^(@) cos 30^(@) - sin 60^(@) sin 30^(@)

Find (in each case, given below) the value of x, if : sin x = sin 60^(@) cos 30^(@) + cos 60^(@) sin 30^(@)

Find (in each case, given below) the value of x, if : sin x = sin 60^(@) cos 30^(@) - cos 60^(@) sin 30^(@)

Find the value of x in the following : cos2x=cos60cos30 + sin60sin30

Find the value of : (i) sin 30^(@)-cos 60^(@) (ii) sin 0^(@)+cos 0^(@)

Find the value of : (i) sin 30^(@)+cos 60^(@) (ii) sin 0^(@)-cos 0^(@)

Evaluate cos45^(@)cos30^(@)+sin45^(@)sin30^(@) .

Prove that : sin60^(@)cos30^(@)+cos60^(@).sin30^(@)=1

Find the value of sin60^(@)cos30^(@)+cos60^(@)sin30^(@) .

Prove that : cos30^(@).cos60^(@)-sin30^(@).sin60^(@)=0