Home
Class 10
MATHS
If a: b= 2: 3, b: c= 4: 5 and c: d= 6: 7...

If `a: b= 2: 3, b: c= 4: 5 and c: d= 6: 7`, find : `a: b: c:d`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the ratio \( a : b : c : d \) given the ratios \( a : b = 2 : 3 \), \( b : c = 4 : 5 \), and \( c : d = 6 : 7 \), we can follow these steps: ### Step 1: Express ratios in terms of a common variable From the given ratios, we can express \( a \), \( b \), \( c \), and \( d \) in terms of a common variable. Let: - \( a = 2x \) - \( b = 3x \) From the second ratio \( b : c = 4 : 5 \): - Since \( b = 3x \), we can set up the equation: \[ \frac{b}{c} = \frac{4}{5} \implies \frac{3x}{c} = \frac{4}{5} \] Cross-multiplying gives: \[ 5 \cdot 3x = 4c \implies c = \frac{15x}{4} \] ### Step 2: Find \( d \) in terms of \( x \) From the third ratio \( c : d = 6 : 7 \): - Since \( c = \frac{15x}{4} \), we can set up the equation: \[ \frac{c}{d} = \frac{6}{7} \implies \frac{\frac{15x}{4}}{d} = \frac{6}{7} \] Cross-multiplying gives: \[ 7 \cdot \frac{15x}{4} = 6d \implies d = \frac{7 \cdot 15x}{24} = \frac{105x}{24} \] ### Step 3: Write all ratios together Now we have: - \( a = 2x \) - \( b = 3x \) - \( c = \frac{15x}{4} \) - \( d = \frac{105x}{24} \) ### Step 4: Find a common denominator To express all ratios in the same format, we can multiply each term by 24 (the least common multiple of the denominators): - \( a = 2x \cdot 12 = 24x \) - \( b = 3x \cdot 8 = 24x \) - \( c = \frac{15x}{4} \cdot 6 = 90x \) - \( d = \frac{105x}{24} \cdot 1 = 105x \) ### Step 5: Combine the ratios Now we can express the ratios as: \[ a : b : c : d = 24x : 36x : 90x : 105x \] This simplifies to: \[ a : b : c : d = 24 : 36 : 90 : 105 \] ### Step 6: Simplify the ratios To simplify \( 24 : 36 : 90 : 105 \): - Find the GCD (Greatest Common Divisor) of these numbers. The GCD is 3. - Dividing each term by 3 gives: \[ a : b : c : d = 8 : 12 : 30 : 35 \] ### Final Answer Thus, the final ratio is: \[ \boxed{8 : 12 : 30 : 35} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CHAPTERWISE REVISION EXERCISE

    ICSE|Exercise CHAPTERWISE REVISION EXERCISE (REMAINDER AND FACTOR THEOREMS)|5 Videos
  • CHAPTERWISE REVISION EXERCISE

    ICSE|Exercise CHAPTERWISE REVISION EXERCISE (MATRICES)|5 Videos
  • CHAPTERWISE REVISION EXERCISE

    ICSE|Exercise CHAPTERWISE REVISION EXERCISE (PROBLEMS ON QUADRATIC EQUATIONS) |6 Videos
  • BANKING (RECURRING DEPOSIT ACCOUNTS)

    ICSE|Exercise QUESTIONS|7 Videos
  • CIRCLES

    ICSE|Exercise EXERCISE 17( C ) |28 Videos

Similar Questions

Explore conceptually related problems

If a : b = 3 : 5 and b : c = 4 : 7 , find a : b : c

(a) If A : B = 3 : 4 and B : C = 6 : 7 , find : (i) A : B : C (ii) A : C (b) If A : B = 2 : 5 and A : C = 3 : 4 , find : A : B : C .

(i) If 3A = 4B = 6C , find : A : B : C . (ii) If 2a = 3b and 4b = 5c , find: a : c .

If a : b=4:5 and b : c=2:3, then a : c (a) 4:3 (b) 8: 15 (c) 8:9 (d) 5:3

In a A B C , A D is the bisector of /_A , meeting side B C at D . If A D=5. 6 c m , B C=6c m and B D=3. 2 c m , find A C . (ii) If A B=10 c m , A C=6c m and B C=12 c m , find B D and D C .

In Fig. 4.42, A D is the bisector of /_B A C . If A B=10 c m . A C=14 c m and B C=6c m , find B D and D C . (FIGURE)

In a A B C , D and E are points on the sides A B and A C respectively such that D E// B C If A D=2\ c m , A B=6\ c m and A C=9\ c m , find A E . .

In a /_\ A B C , A D is the bisector of /_A , meeting side B C at D . (i) If AB=10 cm , AC=14 cm and BC=6cm , find B D and D C (ii) If A C=4. 2 c m , D C=6c m and B C=10 c m , find A B . (iii) If A B=5. 6 c m , A C=6c m and D C=3c m , find B C .

In a /_\ A B C , A D is the bisector of /_A , meeting side B C at D . (i) If B D=2. 5 c m ,\ \ A B=5c m and A C=4. 2 c m , find D C . (ii) If B D=2c m ,\ \ A B=5c m and D C=3c m , find A C . (iii) If A B=3. 5 c m , A C=4. 2 c m and D C=2. 8 c m , find B D .

In a A B C , D and E are points on A B and A C respectively such that D E||B C . If A D=2. 4 c m ,\ \ A E=3. 2 c m ,\ \ D E=2c m and B C=5c m , find B D and C E .