Home
Class 10
MATHS
Find the compounded ratio of: (a-b): (...

Find the compounded ratio of:
`(a-b): (a+b) and (b^(2) + ab): (a^(2) -ab)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the compounded ratio of \((a-b):(a+b)\) and \((b^2 + ab):(a^2 - ab)\), we will follow these steps: ### Step 1: Write the compounded ratio The compounded ratio of two ratios \((x:y)\) and \((z:w)\) is given by: \[ \frac{x \cdot z}{y \cdot w} \] In our case, we have: \[ x = (a-b), \quad y = (a+b), \quad z = (b^2 + ab), \quad w = (a^2 - ab) \] Thus, the compounded ratio can be expressed as: \[ \frac{(a-b)(b^2 + ab)}{(a+b)(a^2 - ab)} \] ### Step 2: Expand the numerator and denominator Now we will expand both the numerator and the denominator. **Numerator:** \[ (a-b)(b^2 + ab) = ab^2 + a^2b - b^3 - ab^2 = a^2b - b^3 \] **Denominator:** \[ (a+b)(a^2 - ab) = a^3 - a^2b + ab^2 - b^3 \] ### Step 3: Simplify the expression Now we can simplify the expression: \[ \frac{a^2b - b^3}{a^3 - a^2b + ab^2 - b^3} \] ### Step 4: Factor out common terms We can factor out \(b\) from the numerator: \[ = \frac{b(a^2 - b^2)}{(a^3 - b^3)} \] Using the difference of cubes, we can rewrite the denominator: \[ = \frac{b(a^2 - b^2)}{(a-b)(a^2 + ab + b^2)} \] ### Step 5: Cancel common factors Now we can cancel out \(a-b\) from the numerator and denominator: \[ = \frac{b(a+b)}{(a^2 + ab + b^2)} \] ### Step 6: Final ratio Thus, the compounded ratio simplifies to: \[ \frac{b(a+b)}{(a^2 + ab + b^2)} \] ### Conclusion The final compounded ratio is: \[ b : (a^2 + ab + b^2) \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION EXERCISE

    ICSE|Exercise CHAPTERWISE REVISION EXERCISE (REMAINDER AND FACTOR THEOREMS)|5 Videos
  • CHAPTERWISE REVISION EXERCISE

    ICSE|Exercise CHAPTERWISE REVISION EXERCISE (MATRICES)|5 Videos
  • CHAPTERWISE REVISION EXERCISE

    ICSE|Exercise CHAPTERWISE REVISION EXERCISE (PROBLEMS ON QUADRATIC EQUATIONS) |6 Videos
  • BANKING (RECURRING DEPOSIT ACCOUNTS)

    ICSE|Exercise QUESTIONS|7 Videos
  • CIRCLES

    ICSE|Exercise EXERCISE 17( C ) |28 Videos

Similar Questions

Explore conceptually related problems

Multiply : a^(2), ab and b^(2)

The points (-a,-b) , (0,0) . (a,b) and (a^(2),ab)) are

If a^(2) +b^(2) = 13 and ab= 6 find: a^(2) - b^(2)

If a=2 and b=-2, find the value of : (i) a^(2)+b^(2) (ii) a^(2)+ab+b^(2) (iii) a^(2)-b^(2)

Find the square roots of : 4ab - 2i( a^(2) - b^(2))

If a-b= 0.9 and ab= 0.36 find: a^(2) -b^(2)

If a+ b = 7 and ab= 6, find a^(2) - b^(2)

If a + b= 9 and ab = -22 , find : a^(2)- b^(2)

Subtract : a^(2) + ab + b^(2) from 4a^(2) - 3ab + 2b^(2)

Find the sum of n terms of the series (a+b)+(a^(2)+ab+b^(2))+(a^(3)+a^(2)b+ab^(2)+b^(3))+"......." where a ne 1,bne 1 and a ne b .