Home
Class 10
MATHS
Find the compounded ratio of: (x+y): ...

Find the compounded ratio of:
`(x+y): (x-y), (x^(2) + y^(2)): (x+y)^(2) and (x^(2)-y^(2))^(2): (x^(4)-y^(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the compounded ratio of the given expressions, we will follow these steps: 1. **Identify the Ratios**: We have three ratios to consider: - \( (x+y) : (x-y) \) - \( (x^2 + y^2) : (x+y)^2 \) - \( (x^2 - y^2)^2 : (x^4 - y^4) \) 2. **Write the Compound Ratio Formula**: The compound ratio of \( a : b, c : d, e : f \) is given by: \[ \text{Compound Ratio} = \frac{a \cdot c \cdot e}{b \cdot d \cdot f} \] 3. **Apply the Formula**: Using the above formula, we can write: \[ \text{Compound Ratio} = \frac{(x+y) \cdot (x^2 + y^2) \cdot (x^2 - y^2)^2}{(x-y) \cdot (x+y)^2 \cdot (x^4 - y^4)} \] 4. **Simplify Each Term**: - The term \( (x^4 - y^4) \) can be factored as \( (x^2 - y^2)(x^2 + y^2) \). - The term \( (x^2 - y^2) \) can be factored as \( (x-y)(x+y) \). 5. **Substituting the Factored Forms**: \[ \text{Compound Ratio} = \frac{(x+y) \cdot (x^2 + y^2) \cdot (x^2 - y^2)^2}{(x-y) \cdot (x+y)^2 \cdot (x^2 - y^2)(x^2 + y^2)} \] 6. **Cancel Common Terms**: - The \( (x+y) \) in the numerator and one \( (x+y) \) in the denominator cancel out. - The \( (x^2 + y^2) \) in the numerator and denominator also cancel out. - The \( (x^2 - y^2) \) can be expressed as \( (x-y)(x+y) \), and we can cancel one \( (x-y) \) from the numerator. 7. **Final Simplification**: After canceling, we have: \[ \text{Compound Ratio} = \frac{(x-y)^2}{(x-y)(x+y)} = \frac{x-y}{x+y} \] Thus, the compounded ratio is: \[ \frac{x-y}{x+y} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION EXERCISE

    ICSE|Exercise CHAPTERWISE REVISION EXERCISE (REMAINDER AND FACTOR THEOREMS)|5 Videos
  • CHAPTERWISE REVISION EXERCISE

    ICSE|Exercise CHAPTERWISE REVISION EXERCISE (MATRICES)|5 Videos
  • CHAPTERWISE REVISION EXERCISE

    ICSE|Exercise CHAPTERWISE REVISION EXERCISE (PROBLEMS ON QUADRATIC EQUATIONS) |6 Videos
  • BANKING (RECURRING DEPOSIT ACCOUNTS)

    ICSE|Exercise QUESTIONS|7 Videos
  • CIRCLES

    ICSE|Exercise EXERCISE 17( C ) |28 Videos

Similar Questions

Explore conceptually related problems

Add : x^(2) y^(2) , 2x^(2)y^(2) , - 4x^(2)y^(2) , 6x^(2)y^(2)

Evaluate : (viii) (3x + 4y) (3x -4y) (9x^2 + 16y^2)

Find the product: (x+y)(x-y)(x^2+y^2)

The solution of the differential equation (dy)/(dx)+(x(x^(2)+3y^(2)))/(y(y^(2)+3x^(2)))=0 is (a) x^(4)+y^(4)+x^(2)y^(2)=c (b) x^(4)+y^(4)+3x^(2)y^(2)=c (c) x^(4)+y^(4)+6x^(2)y^(2)=c (d) x^(4)+y^(4)+9x^(2)y^(2)=c

Find the products: (i) (2x+y)(2x-y)(4x^2+y^2) (ii) (x-y/5-1)\ (x+y/5+1)

(x−y)(x+y)(x^2+y^2)(x^4+y^4) is equal to=

If 7x - 15y = 4x + y , find the value of x: y . Hence, use componendo and dividendo to find the values of : (i) (9x + 5y)/(9x - 5y) (iI) (3x^(2) + 2y^(2))/(3x^(2) - 2y^(2))

If (3x -4y) : (2x -3y) = (5x -6y) : (4x -5y) , find : x : y .

Find the products: (x/2+2y)\ ((x^2)/4-x y+4y^2)

Find the area bounded by the curves x^2 = y , x^2 = -y and y^2 = 4x -3