Home
Class 10
MATHS
If A= [(3,1),(4,0)], B= [(1,-2),(2,3)] a...

If `A= [(3,1),(4,0)], B= [(1,-2),(2,3)] and 3A- 5B + 2X= [(4,3),(0,1)]`, find the matrix X.

Text Solution

AI Generated Solution

The correct Answer is:
To find the matrix \( X \) given the equation \( 3A - 5B + 2X = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Write down the matrices Given: \[ A = \begin{pmatrix} 3 & 1 \\ 4 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -2 \\ 2 & 3 \end{pmatrix} \] ### Step 2: Calculate \( 3A \) To find \( 3A \), we multiply each element of matrix \( A \) by 3: \[ 3A = 3 \times \begin{pmatrix} 3 & 1 \\ 4 & 0 \end{pmatrix} = \begin{pmatrix} 3 \times 3 & 3 \times 1 \\ 3 \times 4 & 3 \times 0 \end{pmatrix} = \begin{pmatrix} 9 & 3 \\ 12 & 0 \end{pmatrix} \] ### Step 3: Calculate \( 5B \) Next, we find \( 5B \) by multiplying each element of matrix \( B \) by 5: \[ 5B = 5 \times \begin{pmatrix} 1 & -2 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 5 \times 1 & 5 \times -2 \\ 5 \times 2 & 5 \times 3 \end{pmatrix} = \begin{pmatrix} 5 & -10 \\ 10 & 15 \end{pmatrix} \] ### Step 4: Substitute \( 3A \) and \( 5B \) into the equation Now substitute \( 3A \) and \( 5B \) into the equation: \[ 3A - 5B + 2X = \begin{pmatrix} 9 & 3 \\ 12 & 0 \end{pmatrix} - \begin{pmatrix} 5 & -10 \\ 10 & 15 \end{pmatrix} + 2X = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix} \] ### Step 5: Perform the subtraction Now we perform the subtraction \( 3A - 5B \): \[ \begin{pmatrix} 9 & 3 \\ 12 & 0 \end{pmatrix} - \begin{pmatrix} 5 & -10 \\ 10 & 15 \end{pmatrix} = \begin{pmatrix} 9 - 5 & 3 - (-10) \\ 12 - 10 & 0 - 15 \end{pmatrix} = \begin{pmatrix} 4 & 13 \\ 2 & -15 \end{pmatrix} \] ### Step 6: Rearrange the equation to isolate \( 2X \) Now we have: \[ \begin{pmatrix} 4 & 13 \\ 2 & -15 \end{pmatrix} + 2X = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix} \] Subtract \( \begin{pmatrix} 4 & 13 \\ 2 & -15 \end{pmatrix} \) from both sides: \[ 2X = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 4 & 13 \\ 2 & -15 \end{pmatrix} = \begin{pmatrix} 4 - 4 & 3 - 13 \\ 0 - 2 & 1 - (-15) \end{pmatrix} = \begin{pmatrix} 0 & -10 \\ -2 & 16 \end{pmatrix} \] ### Step 7: Divide by 2 to find \( X \) Finally, divide each element of \( 2X \) by 2 to find \( X \): \[ X = \frac{1}{2} \begin{pmatrix} 0 & -10 \\ -2 & 16 \end{pmatrix} = \begin{pmatrix} 0 & -5 \\ -1 & 8 \end{pmatrix} \] ### Final Answer Thus, the matrix \( X \) is: \[ X = \begin{pmatrix} 0 & -5 \\ -1 & 8 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION EXERCISE

    ICSE|Exercise CHAPTERWISE REVISION EXERCISE (ARITHMETIC PROGRESSION (A.P.))|7 Videos
  • CHAPTERWISE REVISION EXERCISE

    ICSE|Exercise CHAPTERWISE REVISION EXERCISE (GEOMETRIC PROGRESSION (G.P.))|6 Videos
  • CHAPTERWISE REVISION EXERCISE

    ICSE|Exercise CHAPTERWISE REVISION EXERCISE (REMAINDER AND FACTOR THEOREMS)|5 Videos
  • BANKING (RECURRING DEPOSIT ACCOUNTS)

    ICSE|Exercise QUESTIONS|7 Videos
  • CIRCLES

    ICSE|Exercise EXERCISE 17( C ) |28 Videos

Similar Questions

Explore conceptually related problems

Given A=[{:(,2,-1),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(,0,2):}] , Find the matrix X such that A+X=2B+C.

"If A"=[{:(,8,0),(,4,-2),(,3,6):}] and B=[{:(,2,-2),(,4,2),(,-5,1):}] then find the matrix X, such that 2A+3X=5B

If A=[{:(,0,-1),(,4,-3):}], B=[{:(,-5),(,6):}] and 3A xx M=2B , find matrix M.

Find a matrix X such that 2A+B+X=0 , where A= [(-1, 2) ,(3, 4)],B=[(3,-2) ,(1, 5)] If A=[(8, 0),(4,-2),( 3, 6)]a n dB=[(2,-2),( 4, 2),(-5, 1)], then find the matrix X of order 3x2 such that 2A+3X=5Bdot

If A=[{:(,1,3),(,3,4):}], B=[{:(,-2,1),(,-3,2):}] and A^2-5B^2=5C . find matrix C where C is a 2 by 2 matrix.

if 2A +B=[{:(5,-1),(3,2):}]and A-2B =[{:(1,-4),(0,5):}] then find the matrices A and B .

If A=[[2,3,4],[-3,0,2]], B=[[3,-4,-5],[1,2,1]] and C=[[5,-1,2],[7,0,3]] , find the matrix X such that 2A+3B=X+C

if 2A -3B =[{:(4,2),(-1,0),(3,-2):}]and 3A+B=[{:(1,0),(3,5),(-1,4):}] , then find the matrices A And B,

If A=[(-1,0,2),(3,1,4)], B=[(0,-2,5),(1,-3,1)] and C=[(1,-5,2),(6,0,-4)], then find (2A-3B+4C).

If A=[(3, 0),(5, 1)] and B=[(-4,2),(1, 0)] Find A^(2)-2AB+B^(2)