Home
Class 10
MATHS
Given A= [(3,4),(4,-3)] and B= [(24),(7)...

Given `A= [(3,4),(4,-3)] and B= [(24),(7)]`, find the matrix X such that AX= B.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( AX = B \) where \( A = \begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix} \) and \( B = \begin{pmatrix} 24 \\ 7 \end{pmatrix} \), we will follow these steps: ### Step 1: Define Matrix X Let \( X \) be a column matrix of the form: \[ X = \begin{pmatrix} x \\ y \end{pmatrix} \] ### Step 2: Set Up the Equation We need to multiply matrix \( A \) by matrix \( X \): \[ AX = \begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \] This results in: \[ AX = \begin{pmatrix} 3x + 4y \\ 4x - 3y \end{pmatrix} \] ### Step 3: Equate to Matrix B Set the result equal to matrix \( B \): \[ \begin{pmatrix} 3x + 4y \\ 4x - 3y \end{pmatrix} = \begin{pmatrix} 24 \\ 7 \end{pmatrix} \] ### Step 4: Create the System of Equations From the above equation, we can create two equations: 1. \( 3x + 4y = 24 \) (Equation 1) 2. \( 4x - 3y = 7 \) (Equation 2) ### Step 5: Solve the System of Equations We can solve these equations simultaneously. Let's solve Equation 1 for \( y \): \[ 4y = 24 - 3x \implies y = \frac{24 - 3x}{4} \] Now substitute \( y \) in Equation 2: \[ 4x - 3\left(\frac{24 - 3x}{4}\right) = 7 \] Multiply through by 4 to eliminate the fraction: \[ 16x - 3(24 - 3x) = 28 \] Distributing the -3: \[ 16x - 72 + 9x = 28 \] Combine like terms: \[ 25x - 72 = 28 \] Add 72 to both sides: \[ 25x = 100 \] Divide by 25: \[ x = 4 \] ### Step 6: Substitute Back to Find y Now substitute \( x = 4 \) back into the equation for \( y \): \[ y = \frac{24 - 3(4)}{4} = \frac{24 - 12}{4} = \frac{12}{4} = 3 \] ### Step 7: Write the Solution Matrix Thus, the matrix \( X \) is: \[ X = \begin{pmatrix} 4 \\ 3 \end{pmatrix} \] ### Final Answer The matrix \( X \) such that \( AX = B \) is: \[ X = \begin{pmatrix} 4 \\ 3 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION EXERCISE

    ICSE|Exercise CHAPTERWISE REVISION EXERCISE (ARITHMETIC PROGRESSION (A.P.))|7 Videos
  • CHAPTERWISE REVISION EXERCISE

    ICSE|Exercise CHAPTERWISE REVISION EXERCISE (GEOMETRIC PROGRESSION (G.P.))|6 Videos
  • CHAPTERWISE REVISION EXERCISE

    ICSE|Exercise CHAPTERWISE REVISION EXERCISE (REMAINDER AND FACTOR THEOREMS)|5 Videos
  • BANKING (RECURRING DEPOSIT ACCOUNTS)

    ICSE|Exercise QUESTIONS|7 Videos
  • CIRCLES

    ICSE|Exercise EXERCISE 17( C ) |28 Videos

Similar Questions

Explore conceptually related problems

Given A= [(3,6),(-2,-8)] and B= [-2" " 16] , find the matrix X such that XA= B

If A=[{:(4,4),(-2,6):}] and B=[{:(2,1),(3,-2):}] find the matrix D such that 3A -2B + 2D = 0

If A=[{:(,2,1),(,1,3):}] and B=[ {: (, 3),(,-11 ):}] . find the matrix X such that AX=B.

Given matrix A=[{:(,5),(,-3):}] and matrix B=[{:(,-1),(,7):}] find matrix X such that : A+2X=B.

Given A=[{:(,2,-6),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,4,0),(,0,2):}] . Find the matrix X such that A+2X=2B+C.

Given A=[{:(,2,-1),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(,0,2):}] , Find the matrix X such that A+X=2B+C.

Given A= [(2),(-3)] , B= [(0),(2)] and C= [(-1),(4)] , find the matrix X in each of the following: (i) X+B=C-A (ii) A-X=B+C

if A=[{:(2,-3),(4,-1):}]and B=[{:(3,0),(-1,2):}], then find matrix C such that 2A-B+3c is a unit matrix.