Home
Class 10
MATHS
Prove that: sin^(2) A tan A + cos^(2) A ...

Prove that: `sin^(2) A tan A + cos^(2) A cot A + 2 sin A cos A= tan A + cot A`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION EXERCISE

    ICSE|Exercise CHAPTERWISE REVISION EXERCISE (STATITICS)|6 Videos
  • CHAPTERWISE REVISION EXERCISE

    ICSE|Exercise CHAPTERWISE REVISION EXERCISE (PROBABILITY)|16 Videos
  • CHAPTERWISE REVISION EXERCISE

    ICSE|Exercise CHAPTERWISE REVISION EXERCISE (MENSURATION)|8 Videos
  • BANKING (RECURRING DEPOSIT ACCOUNTS)

    ICSE|Exercise QUESTIONS|7 Videos
  • CIRCLES

    ICSE|Exercise EXERCISE 17( C ) |28 Videos

Similar Questions

Explore conceptually related problems

Prove that : sin cot^(-1) tan cos^(-1) x=x

Prove that ( sin 2 A )/( 1 - cos 2 A) = cot A

Prove that : sin A (1 + tan A) + cos A (1 + cot A) = sec A + cosec A.

Prove that : (tan A + cot A) (cosec A - sin A) (sec A - cos A) = 1

Prove that : (cos ^(2) A + tan ^(2) A - 1 )/( sin ^(2) A ) = tan ^(2) A .

Prove that : (1 + cot A + tan A) (sin A — cos A) = sin A tan A — cot A cos A.

Prove that : (1 + cot A + tan A) (sin A — cos A) = sin A tan A — cot A cos A.

Prove that tan A - cot A =-2 cot2A

Prove that : (cos A)/ (1 - tan A) + (sin A)/ (1- cot A) = sin A + cos A

Prove that sin cot^(-1) tan cos^(-1) x = sin cosec^(-1) cot tan^(-1) x = x, " where " x in [0,1]