Home
Class 10
MATHS
Show that , if A = [{:(1,3),(2,6) :}] an...

Show that ,` if A = [{:(1,3),(2,6) :}] and B = [{:(-1,4), (2,1):}] ` then `: (A +B) ^(2) ne A ^(2) + 2 AB + B ^(2).`

Text Solution

AI Generated Solution

The correct Answer is:
To show that \( (A + B)^2 \neq A^2 + 2AB + B^2 \) for the given matrices \( A \) and \( B \), we will follow these steps: ### Step 1: Define the matrices Let \[ A = \begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 4 \\ 2 & 1 \end{pmatrix} \] ### Step 2: Calculate \( A + B \) We add the matrices \( A \) and \( B \) component-wise: \[ A + B = \begin{pmatrix} 1 + (-1) & 3 + 4 \\ 2 + 2 & 6 + 1 \end{pmatrix} = \begin{pmatrix} 0 & 7 \\ 4 & 7 \end{pmatrix} \] ### Step 3: Calculate \( (A + B)^2 \) Now we need to calculate \( (A + B)^2 \): \[ (A + B)^2 = (A + B)(A + B) = \begin{pmatrix} 0 & 7 \\ 4 & 7 \end{pmatrix} \begin{pmatrix} 0 & 7 \\ 4 & 7 \end{pmatrix} \] To multiply these matrices, we compute: - First row, first column: \( 0 \cdot 0 + 7 \cdot 4 = 28 \) - First row, second column: \( 0 \cdot 7 + 7 \cdot 7 = 49 \) - Second row, first column: \( 4 \cdot 0 + 7 \cdot 4 = 28 \) - Second row, second column: \( 4 \cdot 7 + 7 \cdot 7 = 28 + 49 = 77 \) Thus, \[ (A + B)^2 = \begin{pmatrix} 28 & 49 \\ 28 & 77 \end{pmatrix} \] ### Step 4: Calculate \( A^2 \) Next, we calculate \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix} \] Calculating this gives: - First row, first column: \( 1 \cdot 1 + 3 \cdot 2 = 1 + 6 = 7 \) - First row, second column: \( 1 \cdot 3 + 3 \cdot 6 = 3 + 18 = 21 \) - Second row, first column: \( 2 \cdot 1 + 6 \cdot 2 = 2 + 12 = 14 \) - Second row, second column: \( 2 \cdot 3 + 6 \cdot 6 = 6 + 36 = 42 \) Thus, \[ A^2 = \begin{pmatrix} 7 & 21 \\ 14 & 42 \end{pmatrix} \] ### Step 5: Calculate \( B^2 \) Now, we calculate \( B^2 \): \[ B^2 = B \cdot B = \begin{pmatrix} -1 & 4 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} -1 & 4 \\ 2 & 1 \end{pmatrix} \] Calculating this gives: - First row, first column: \( -1 \cdot -1 + 4 \cdot 2 = 1 + 8 = 9 \) - First row, second column: \( -1 \cdot 4 + 4 \cdot 1 = -4 + 4 = 0 \) - Second row, first column: \( 2 \cdot -1 + 1 \cdot 2 = -2 + 2 = 0 \) - Second row, second column: \( 2 \cdot 4 + 1 \cdot 1 = 8 + 1 = 9 \) Thus, \[ B^2 = \begin{pmatrix} 9 & 0 \\ 0 & 9 \end{pmatrix} \] ### Step 6: Calculate \( 2AB \) Next, we calculate \( 2AB \): \[ AB = A \cdot B = \begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix} \begin{pmatrix} -1 & 4 \\ 2 & 1 \end{pmatrix} \] Calculating this gives: - First row, first column: \( 1 \cdot -1 + 3 \cdot 2 = -1 + 6 = 5 \) - First row, second column: \( 1 \cdot 4 + 3 \cdot 1 = 4 + 3 = 7 \) - Second row, first column: \( 2 \cdot -1 + 6 \cdot 2 = -2 + 12 = 10 \) - Second row, second column: \( 2 \cdot 4 + 6 \cdot 1 = 8 + 6 = 14 \) Thus, \[ AB = \begin{pmatrix} 5 & 7 \\ 10 & 14 \end{pmatrix} \] Now, multiplying by 2: \[ 2AB = 2 \begin{pmatrix} 5 & 7 \\ 10 & 14 \end{pmatrix} = \begin{pmatrix} 10 & 14 \\ 20 & 28 \end{pmatrix} \] ### Step 7: Calculate \( A^2 + 2AB + B^2 \) Now we can add \( A^2 \), \( 2AB \), and \( B^2 \): \[ A^2 + 2AB + B^2 = \begin{pmatrix} 7 & 21 \\ 14 & 42 \end{pmatrix} + \begin{pmatrix} 10 & 14 \\ 20 & 28 \end{pmatrix} + \begin{pmatrix} 9 & 0 \\ 0 & 9 \end{pmatrix} \] Calculating this gives: - First row, first column: \( 7 + 10 + 9 = 26 \) - First row, second column: \( 21 + 14 + 0 = 35 \) - Second row, first column: \( 14 + 20 + 0 = 34 \) - Second row, second column: \( 42 + 28 + 9 = 79 \) Thus, \[ A^2 + 2AB + B^2 = \begin{pmatrix} 26 & 35 \\ 34 & 79 \end{pmatrix} \] ### Step 8: Compare \( (A + B)^2 \) and \( A^2 + 2AB + B^2 \) Now we compare: \[ (A + B)^2 = \begin{pmatrix} 28 & 49 \\ 28 & 77 \end{pmatrix} \] \[ A^2 + 2AB + B^2 = \begin{pmatrix} 26 & 35 \\ 34 & 79 \end{pmatrix} \] Clearly, \( (A + B)^2 \neq A^2 + 2AB + B^2 \). ### Conclusion Thus, we have shown that: \[ (A + B)^2 \neq A^2 + 2AB + B^2 \]
Promotional Banner

Topper's Solved these Questions

  • REVISION PAPER -5

    ICSE|Exercise SECTION B|28 Videos
  • REVISION PAPER -4

    ICSE|Exercise SECTION - B|26 Videos
  • SAMPLE PAPER 1

    ICSE|Exercise Questions (Section - C)|12 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(,1,2),(,2,1):}] and B=[{:(,2,1),(,1,2):}] find : (i) A(BA) (ii) (AB) B.

if A=[{:(1,2,-5),(-3,4,6):}]and B[{:(-2,3,-4),(1,2,3):}]' then find 2A+B.

if A=[{:(1,2,3),(4,5,6):}]and B=[{:(-3,-2),(0,1),(-4,-5):}], then find AB and BA ,

if A=[{:(4,0,-3),(1,2,0):}]and B=[{:(2,1),(1,-2),(3,4):}]' then find AB and BA.

Given A=[{:(2,4,0),(3,9,6):}] "and" B=[{:(1,4),(2,8),(1,3):}] , is (AB)=B'A'?

If A=[{:(,1),(,2),(,3):}]and B =[{:(,-5,4,0),(,0,2,-1),(,1,-3,2):}]"then AB"

If A=[{:(2,1,2),(1,2,4):}] and B=[{:(4,1),(2,3),(1,2):}] Find AB and BA ( if it exist)

Given A=[{:(,4,1),(,2,3):}] and B=[{:(,1,0),(,-2,01):}] , Find (i) A-B (ii) A^2 (iii) AB (iv) A^2-AB+2B

Let A=[{:(,1,0),(,2,1):}], B=[{:(,2,3),(,-1,0):}] . Find A^2+AB+B^2

ICSE-REVISION PAPER -5-SECTION B
  1. From a point of observation at the top of a 175 m high cliff, the angl...

    Text Solution

    |

  2. If P(x , y) is any point on the line joining the point A(a ,0)a n dB(0...

    Text Solution

    |

  3. Show that , if A = [{:(1,3),(2,6) :}] and B = [{:(-1,4), (2,1):}] the...

    Text Solution

    |

  4. Prove that angle in the same segment of a circle are equal.

    Text Solution

    |

  5. On a graph paper, plot the triangle ABC whose vertices are at the poin...

    Text Solution

    |

  6. The point P divides the joining of (2,1) and (-3,6) in the ratio 2:3. ...

    Text Solution

    |

  7. In the given TA is a tangent to the cirlce and TBC is a secant. If AD ...

    Text Solution

    |

  8. The ends of a diagonal of a square have co-ordinates (-2,p) and (p,2) ...

    Text Solution

    |

  9. If have shares of three companies A,B and C in the ratio 2:3:4. Compan...

    Text Solution

    |

  10. Tickets numbered from 1 to 20 are mixed up together and then a ticket ...

    Text Solution

    |

  11. A solid toy is in the form of a right circular cylinder with a hemi...

    Text Solution

    |

  12. The surface area of a solid metallic sphere is 10256 cm^(2). It is mel...

    Text Solution

    |

  13. The marks obtained (out of 100) by 400 students in an examination are...

    Text Solution

    |

  14. The marks obtained (out of 100) by 400 students in an examination are...

    Text Solution

    |

  15. The marks obtained (out of 100) by 400 students in an examination are...

    Text Solution

    |

  16. If 49- 5x le 27 - x, find, the smallest value of x, when x is a rea...

    Text Solution

    |

  17. If 49- 5x le 27 - x, find, the smallest value of x, when x is an in...

    Text Solution

    |

  18. The drawn alongiside (not drawn to scale) shows two stragit lines AB a...

    Text Solution

    |

  19. If cosec theta .cos (theta + 54 ^(@)) = 1, find the value of theta

    Text Solution

    |

  20. (a) the figure drawn alongside shows two straight lines AB and CD . if...

    Text Solution

    |