Home
Class 8
MATHS
{:(" A 1"),("+1 B"),(--),(" B 0"),(--):}...

`{:(" A 1"),("+1 B"),(--),(" B 0"),(--):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( a1 + 1b = b0 \), we will break it down step by step. ### Step 1: Understand the equation The equation \( a1 + 1b = b0 \) can be interpreted as: - \( a1 \) represents the two-digit number where \( a \) is the tens digit and 1 is the units digit, which can be expressed as \( 10a + 1 \). - \( 1b \) represents the two-digit number where 1 is the tens digit and \( b \) is the units digit, which can be expressed as \( 10 + b \). - \( b0 \) represents the two-digit number where \( b \) is the tens digit and 0 is the units digit, which can be expressed as \( 10b \). So we can rewrite the equation as: \[ (10a + 1) + (10 + b) = 10b \] ### Step 2: Simplify the equation Now, let's simplify the equation: \[ 10a + 1 + 10 + b = 10b \] Combining like terms gives: \[ 10a + b + 11 = 10b \] ### Step 3: Rearranging the equation Next, we will rearrange the equation to isolate \( a \) and \( b \): \[ 10a + 11 = 10b - b \] This simplifies to: \[ 10a + 11 = 9b \] ### Step 4: Solve for \( b \) From the equation \( 10a + 11 = 9b \), we can express \( b \) in terms of \( a \): \[ b = \frac{10a + 11}{9} \] ### Step 5: Find integer values for \( a \) and \( b \) Since \( a \) and \( b \) must be digits (0-9), we will test integer values for \( a \) from 0 to 9 to find a valid \( b \). - If \( a = 0 \): \[ b = \frac{10(0) + 11}{9} = \frac{11}{9} \quad \text{(not an integer)} \] - If \( a = 1 \): \[ b = \frac{10(1) + 11}{9} = \frac{21}{9} \quad \text{(not an integer)} \] - If \( a = 2 \): \[ b = \frac{10(2) + 11}{9} = \frac{31}{9} \quad \text{(not an integer)} \] - If \( a = 3 \): \[ b = \frac{10(3) + 11}{9} = \frac{41}{9} \quad \text{(not an integer)} \] - If \( a = 4 \): \[ b = \frac{10(4) + 11}{9} = \frac{51}{9} \quad \text{(not an integer)} \] - If \( a = 5 \): \[ b = \frac{10(5) + 11}{9} = \frac{61}{9} \quad \text{(not an integer)} \] - If \( a = 6 \): \[ b = \frac{10(6) + 11}{9} = \frac{71}{9} \quad \text{(not an integer)} \] - If \( a = 7 \): \[ b = \frac{10(7) + 11}{9} = \frac{81}{9} = 9 \quad \text{(valid)} \] - If \( a = 8 \): \[ b = \frac{10(8) + 11}{9} = \frac{91}{9} \quad \text{(not an integer)} \] - If \( a = 9 \): \[ b = \frac{10(9) + 11}{9} = \frac{101}{9} \quad \text{(not an integer)} \] ### Step 6: Conclusion The only valid solution we found is \( a = 7 \) and \( b = 9 \). ### Final Check To verify: \[ a1 + 1b = 71 + 19 = 90 \] And: \[ b0 = 90 \] Both sides are equal, confirming our solution is correct. ### Summary of Values - \( a = 7 \) - \( b = 9 \) ---
Promotional Banner

Topper's Solved these Questions

  • PLAYING WITH NUMBERS

    ICSE|Exercise EXERCISE 5( C) |6 Videos
  • PLAYING WITH NUMBERS

    ICSE|Exercise EXERCISE 5( D) |11 Videos
  • PLAYING WITH NUMBERS

    ICSE|Exercise EXERCISE 5(A) |9 Videos
  • LINEAR INEQUATIONS

    ICSE|Exercise Exercise 15(B)|18 Videos
  • PROBABILITY

    ICSE|Exercise Exercise|54 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(0,1),(1,1):}] "and" B=[{:(0,-1),(1,0):}] , then show that (A+B)(A-B)neA^(2)-B^(2)

(i) if A=[{:(1,0),(0,1):}],B=[{:(0,1),(1,0):}]and C=[{:(1,0),(0,1):}], then show that A^(2)=B^(2)=C^(2)=I_(2). (ii) if A=[{:(1,0),(1,1):}],B=[{:(2,0),(1,1):}]and C=[{:(-1,2),(3,1):}], then show that A(B+C)=AB+AC. (iii) if A=[{:(1,-1),(-1,1):}]and B=[{:(1,1),(1,1):}], then show that AB is a zero matrix.

If A= [[1,-1,0],[2,3,4],[0,1,2]] and B = [[2,2,-4],[-4,2,-4],[2,-1,5]] then, (A) A^(-1) =B (B) A^(-1) =6B (C) B^(-1) =B (D) B^(-1) = 1/6 A

Given a skew symmetric matrix A = [ (0, a , 1),(-1, b, 1),(-1, c, 0)] , the value of (a + b + c)^2 is

If I= [{:(,1,0),(,0,1):}], J=[{:(,0,1),(,-1,0):}]and B=[{:(,cos theta,sin theta),(,-sin theta,cos theta)]:}"then B"=

If A=[{:(,a,0),(,0,2):}], B=[{:(,0,-b),(,1,0):}], M=[{:(,1,-1),(,1,1):}] and BA=M^2 , find the values of a and b.

If {:A+B=[(1,0),(1,1)]andA-2B=[(-1,1),(0,-1)]:}," then "A=

If adj [(1,0,2),(-1,1,-2),(0,2,1)]=[(5,a,-2),(1,1,0),(-2,-2,b)] , then find a ,b

The matrix X in the equation AX=B, such that A= [(1,3),(0,1)] and B= [(1,-1),(0,1)] is given by (A) [(1,0),(-3,1)] (B) [(1,-4),0,1)] (C) [(1,-3),(0,1)] (D) [(0,-1),(-3,1)]

If A=[(a , b),( c, d)] , B=[(1 ,0),( 0, 1)] , find a d j\ (A B) .