Home
Class 8
MATHS
{:("A B"),("x 5"),(---),("C A B"),(---):...

`{:("A B"),("x 5"),(---),("C A B"),(---):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( AB \times 5 = CAB \), we will break it down step by step. ### Step 1: Understand the notation The notation \( AB \) represents a two-digit number where \( A \) is the tens digit and \( B \) is the units digit. Therefore, we can express \( AB \) as: \[ AB = 10A + B \] ### Step 2: Set up the equation Given the equation \( AB \times 5 = CAB \), we can substitute \( AB \) into the equation: \[ (10A + B) \times 5 = CAB \] The number \( CAB \) can be expressed as: \[ CAB = 100C + 10A + B \] Thus, we can rewrite our equation as: \[ 5(10A + B) = 100C + 10A + B \] ### Step 3: Expand and simplify Expanding the left side gives us: \[ 50A + 5B = 100C + 10A + B \] Now, we will move all terms to one side: \[ 50A + 5B - 10A - B = 100C \] This simplifies to: \[ 40A + 4B = 100C \] ### Step 4: Factor the equation We can factor out 4 from the left side: \[ 4(10A + B) = 100C \] Dividing both sides by 4 gives: \[ 10A + B = 25C \] ### Step 5: Analyze the equation From \( 10A + B = 25C \), we know that \( 10A + B \) must be a multiple of 25. Since \( A \) and \( B \) are digits (0-9), we can analyze possible values for \( C \). ### Step 6: Find possible values for \( C \) Since \( C \) is a digit, the possible values for \( C \) are 0, 1, 2, or 3 (as \( 25C \) must be a two-digit number). ### Step 7: Test values for \( C \) 1. **If \( C = 0 \)**: \[ 10A + B = 0 \quad \text{(not valid since A and B must be digits)} \] 2. **If \( C = 1 \)**: \[ 10A + B = 25 \quad \Rightarrow \quad A = 2, B = 5 \] 3. **If \( C = 2 \)**: \[ 10A + B = 50 \quad \Rightarrow \quad A = 5, B = 0 \] 4. **If \( C = 3 \)**: \[ 10A + B = 75 \quad \Rightarrow \quad A = 7, B = 5 \quad \text{(not valid since B cannot be 5)} \] ### Step 8: Conclusion The valid pairs we found are: - For \( C = 1 \): \( A = 2, B = 5 \) - For \( C = 2 \): \( A = 5, B = 0 \) Since the problem states that \( B \) must be a digit that when multiplied by 5 gives \( B \) itself, the only valid solution is: \[ A = 5, B = 0 \] Thus, the final answer is: \[ A = 5, B = 0 \]
Promotional Banner

Topper's Solved these Questions

  • PLAYING WITH NUMBERS

    ICSE|Exercise EXERCISE 5( C) |6 Videos
  • PLAYING WITH NUMBERS

    ICSE|Exercise EXERCISE 5( D) |11 Videos
  • PLAYING WITH NUMBERS

    ICSE|Exercise EXERCISE 5(A) |9 Videos
  • LINEAR INEQUATIONS

    ICSE|Exercise Exercise 15(B)|18 Videos
  • PROBABILITY

    ICSE|Exercise Exercise|54 Videos

Similar Questions

Explore conceptually related problems

Expand : (i) (a+b-c)^(2) " " (ii) (a-2b-5c)^(2) " " (iii) (3a-2b-5c)^(2) " " (iv) (2x+(1)/(x)+1)^(2) .

if a+b+c=0 then Delta=|{:(a-x,c,b),(c,b-x,a),(b,a,c-x):}|=0 is

If |(a-b-c, 2a, 2a),(2b, b-a-c, 2b),(2c, 2c, c-a-b)|=(a+b+c)(x+a+b+c)^2 then the value of x is equal to (A) -2(a+b+c) (B) a+b+c (C) -(a+b+c) (D) 2(a+b+c)

If a,b,c, in R, find the number of real root of the equation |{:(x,c,-b),(-c,x,a),(b,-a,x):}| =0

Let a,b,c be even natural numbers, then /_\=|(a-x, a, a+x),(b-x, b, b+x),(c-x, c, c+x)| is a multiple of (A) 2 (B) 5 (C) 3 (D) none of these

For any two rational numbers a and b ,\ a^5x\ b^5 is equal to (a\ x\ b)^0 (b) (a\ x\ b)^(10) (c) (a\ x\ b)^5 (d) (a\ x\ b)^(25)

The equation (a(x-b)(x-c))/((a-b)(a-c)) + (b(x-c)(x-a))/((b-c)(b-a))+ (c (x-a) (x-b))/((c-a)(c-b))= x is satisfied by

Prove that : |{:(x+a,b,c),(a,x+b,c),(a,b,x+c):}|=x^(2)(x+a+b+c)

The equation |(x-a,x-b,x-c),(x-b,x-a,x-c),(x-c,x-b,x-a)|=0 (a,b,c are different) is satisfied by (A) x=(a+b+c0 (B) x= 1/3 (a+b+c) (C) x=0 (D) none of these

If (x^(3))/((x-a)(x-b)(x-c))=1 +(A)/(x-a)+(B)/(x-b)+(C)/(x-c) then A=