Home
Class 8
MATHS
Multiply 2x^(3) - 7x + 8 by 3x^(2) + 2x....

Multiply `2x^(3) - 7x + 8` by `3x^(2) + 2x`.

Text Solution

AI Generated Solution

The correct Answer is:
To multiply the algebraic expressions \(2x^3 - 7x + 8\) and \(3x^2 + 2x\), we will follow these steps: ### Step 1: Distribute \(3x^2\) to each term in the first expression We will multiply \(3x^2\) by each term in \(2x^3 - 7x + 8\). \[ 3x^2 \cdot 2x^3 = 6x^5 \] \[ 3x^2 \cdot (-7x) = -21x^3 \] \[ 3x^2 \cdot 8 = 24x^2 \] So, after distributing \(3x^2\), we have: \[ 6x^5 - 21x^3 + 24x^2 \] ### Step 2: Distribute \(2x\) to each term in the first expression Next, we will multiply \(2x\) by each term in \(2x^3 - 7x + 8\). \[ 2x \cdot 2x^3 = 4x^4 \] \[ 2x \cdot (-7x) = -14x^2 \] \[ 2x \cdot 8 = 16x \] So, after distributing \(2x\), we have: \[ 4x^4 - 14x^2 + 16x \] ### Step 3: Combine all the results Now we will combine all the terms from both distributions: \[ 6x^5 + 4x^4 - 21x^3 + 24x^2 - 14x^2 + 16x \] ### Step 4: Combine like terms Now, we will combine like terms: - The \(x^2\) terms: \(24x^2 - 14x^2 = 10x^2\) So, the final expression will be: \[ 6x^5 + 4x^4 - 21x^3 + 10x^2 + 16x \] ### Final Answer: The product of \(2x^3 - 7x + 8\) and \(3x^2 + 2x\) is: \[ 6x^5 + 4x^4 - 21x^3 + 10x^2 + 16x \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (A)|30 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (B)|35 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Multiply : 2x^(2) - 4x + 5 by x^(2) + 3x - 7

Multiply x^(2) - 4x + 7 by x - 2.

Multiply 2x - 5 " by " 3x+2

Multiply: 2x by (3x+5y)

Multiply : 2x " with " 3x

Multiply: (7x y+5y) by 3x y

Multiply -5xy^(2), -3x^(2)yz and 8yz^(2) . Verify the result for x = 1, y = 2 and z = 3.

Multiply: (2x^2-4x+5)\ b y\ (x^2+3x-7)

Multiply : -2x xx 3y" by " x^(2)

Simplify the following : 5x^(4) - 7x^(2) +8x - 1 +3x^(2) - 9x^(2) + 7 - 3x^(4)+11x - 2 +8x^(2)