Home
Class 8
MATHS
Divide : 36a^(7) by -12a^(3)...

Divide :
`36a^(7)` by `-12a^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To divide \( 36a^{7} \) by \( -12a^{3} \), we can follow these steps: ### Step 1: Write the expression We start with the expression: \[ \frac{36a^{7}}{-12a^{3}} \] ### Step 2: Factor the coefficients We can factor the coefficients \( 36 \) and \( -12 \): \[ \frac{36}{-12} \cdot \frac{a^{7}}{a^{3}} \] ### Step 3: Simplify the coefficients Now, simplify \( \frac{36}{-12} \): \[ \frac{36}{-12} = -3 \] So, we have: \[ -3 \cdot \frac{a^{7}}{a^{3}} \] ### Step 4: Apply the law of exponents Using the law of exponents \( \frac{a^{m}}{a^{n}} = a^{m-n} \), we can simplify \( \frac{a^{7}}{a^{3}} \): \[ \frac{a^{7}}{a^{3}} = a^{7-3} = a^{4} \] Now, we can combine this with the coefficient: \[ -3 \cdot a^{4} \] ### Step 5: Write the final answer Thus, the final answer is: \[ -3a^{4} \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (A)|30 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (B)|35 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Divide 60 a^(5) by 12 a^(2)

Divide : 12x^(2) + 7xy - 12y^(2) by 3x + 4y

Divide : 36x^(2)y^(2) + 42 xy^(3) - 24 x^(3)y^(2) - 12 y^(5) by - 6y^(2)

Factorise : 3a^(2) b - 12 a^(2) - 9b + 36

Divide -36x^(7)y^(6) z " by " - 12x^(2)y^(4)z^(3)

Divide : 6.02 div 7

Divide 28a^(2) " by " 7a^(5)

Divide: a. (7)/(9) div 14

Divide : a^(2) + 7a + 12 by a + 4

Divide : 78.48 div12