Home
Class 8
MATHS
Divide : -50a^(2)b^(3) by -15a^(4)b^(2...

Divide :
`-50a^(2)b^(3)` by -`15a^(4)b^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of dividing \(-50a^{2}b^{3}\) by \(-15a^{4}b^{2}\), we can follow these steps: ### Step 1: Write the division as a fraction We start by expressing the division in fraction form: \[ \frac{-50a^{2}b^{3}}{-15a^{4}b^{2}} \] ### Step 2: Simplify the coefficients Next, we simplify the numerical coefficients. The coefficients are \(-50\) and \(-15\). Since both are negative, they will cancel out: \[ \frac{-50}{-15} = \frac{50}{15} = \frac{10}{3} \] ### Step 3: Simplify the variables Now, we simplify the variable parts. We have \(a^{2}\) in the numerator and \(a^{4}\) in the denominator. According to the laws of exponents: \[ \frac{a^{m}}{a^{n}} = a^{m-n} \] So: \[ \frac{a^{2}}{a^{4}} = a^{2-4} = a^{-2} \] For the \(b\) terms, we have \(b^{3}\) in the numerator and \(b^{2}\) in the denominator: \[ \frac{b^{3}}{b^{2}} = b^{3-2} = b^{1} = b \] ### Step 4: Combine the results Now we can combine the simplified coefficients and variables: \[ \frac{10}{3} \cdot a^{-2} \cdot b = \frac{10b}{3a^{2}} \] ### Final Answer Thus, the final result of dividing \(-50a^{2}b^{3}\) by \(-15a^{4}b^{2}\) is: \[ \frac{10b}{3a^{2}} \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (A)|30 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (B)|35 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Divide : 15a^(4)b by -5a^(3)b

Divide : 15a^(3)b^(4) - 10a^(4)b^(3) - 25a^(3)b^(6) by -5a^(3)b^(2)

Divide : 63a^(4)b^(5)c^(6) by -9a^(2)b^(4)c^(3)

Divide : 18a^(3)b^(2) - 27 a^(2)b^(3) +9ab^(2) by 3ab

Divide : 4a^(2) + 12ab + 9b^(2) - 25c^(2) by 2a + 3b + 5c

Divide : (-3)/4b y-6 (ii) 2/3b y(-7)/(12) -4\ b y(-3)/5 (iv) (-3)/(13)b y(-4)/(65)

Divide: x^(4a)+x^(2a)y^(2b)+y^(4b)\ b y\ \ x^(2a)+\ x^a\ y^b+\ y^(2b)

Factorise : 2ab^(2) c - 2a + 3b^(3) c - 3b - 4b^(2) c^(2) + 4c

Divide 12 x^3y^3b y\ 3x^2y (ii) -15 a^2b c^3\ b y\ \ 3a b

Divide : (i) 1\ b y1/2 (ii) 5\ b y(-5)/7 (iii) (-3)/4b y9/(-16)