Home
Class 8
MATHS
Divide : 9a^(5) - 6a^(2) by 3a^(2)...

Divide : `9a^(5) - 6a^(2)` by `3a^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To divide the expression \(9a^5 - 6a^2\) by \(3a^2\), we can follow these steps: ### Step 1: Write the division in fraction form We start by writing the expression as a fraction: \[ \frac{9a^5 - 6a^2}{3a^2} \] ### Step 2: Split the fraction We can split the fraction into two separate fractions: \[ \frac{9a^5}{3a^2} - \frac{6a^2}{3a^2} \] ### Step 3: Simplify each fraction Now, we simplify each fraction separately. For the first fraction: \[ \frac{9a^5}{3a^2} = \frac{9}{3} \cdot \frac{a^5}{a^2} = 3a^{5-2} = 3a^3 \] For the second fraction: \[ \frac{6a^2}{3a^2} = \frac{6}{3} \cdot \frac{a^2}{a^2} = 2 \cdot 1 = 2 \] ### Step 4: Combine the results Now we combine the results from the two fractions: \[ 3a^3 - 2 \] ### Final Answer Thus, the final result of dividing \(9a^5 - 6a^2\) by \(3a^2\) is: \[ 3a^3 - 2 \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (A)|30 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (B)|35 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Divide 9a^(2) by 3

Divide : 63a^(4)b^(5)c^(6) by -9a^(2)b^(4)c^(3)

Divide : 18a^(3)b^(2) - 27 a^(2)b^(3) +9ab^(2) by 3ab

Divide : 2a^(2) +6 by 2

Divide : 4a^(2) + 12ab + 9b^(2) - 25c^(2) by 2a + 3b + 5c

Divide: 9m^5+12 m^4-6m^2\ \ by \ \ 3m^2 (2) 24 x^3y+20 x^2y^2-4x y\ by \ \ 2x y

Divide 6x^(4) - 9x^(3) + 18x^(2) " by " 3x

Divide -54x^(3)y^(2) by 9x^(2)y

Divide: 2(3)/(5)div6(1)/(2)

Divide : 36x^(2)y^(2) + 42 xy^(3) - 24 x^(3)y^(2) - 12 y^(5) by - 6y^(2)