Home
Class 8
MATHS
Simplify : 84 - 7[-11x - 4{-17x + 3(8-9+...

Simplify : `84 - 7[-11x - 4{-17x + 3(8-9+5x))}]`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression `84 - 7[-11x - 4{-17x + 3(8 - 9 + 5x)}]`, we will follow the order of operations (commonly known as BODMAS/BIDMAS: Brackets, Orders, Division and Multiplication, Addition and Subtraction). ### Step-by-Step Solution: 1. **Start with the original expression**: \[ 84 - 7[-11x - 4{-17x + 3(8 - 9 + 5x)}] \] 2. **Simplify the innermost bracket**: \[ 8 - 9 + 5x = -1 + 5x = 5x - 1 \] Now substitute this back into the expression: \[ 84 - 7[-11x - 4{-17x + 3(5x - 1)}] \] 3. **Distribute the 3 into the bracket**: \[ 3(5x - 1) = 15x - 3 \] Substitute this back: \[ 84 - 7[-11x - 4{-17x + 15x - 3}] \] 4. **Combine like terms inside the curly braces**: \[ -17x + 15x = -2x \] So we have: \[ 84 - 7[-11x - 4(-2x - 3)] \] 5. **Distribute the -4**: \[ -4(-2x) = 8x \quad \text{and} \quad -4(-3) = 12 \] Substitute back: \[ 84 - 7[-11x + 8x + 12] \] 6. **Combine like terms**: \[ -11x + 8x = -3x \] So the expression becomes: \[ 84 - 7[-3x + 12] \] 7. **Distribute the -7**: \[ -7(-3x) = 21x \quad \text{and} \quad -7(12) = -84 \] Substitute back: \[ 84 + 21x - 84 \] 8. **Combine the constants**: \[ 84 - 84 = 0 \] Thus, we have: \[ 21x \] ### Final Answer: \[ 21x \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (A)|30 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (B)|35 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Simplify : (7x - 8)(3x + 2)

Simplify : 15x-[8x^2 + 3x^2 - {8x^2 - (4-2x-x^3)-5x^3}-2x]

Simplify: 9/(11)-4/(15) (ii) 8 1/2-3 5/8

Simplify : 7x^3 +8y^3- (4x+3y)(16x^2-12xy+9y^2)

Simplify : x^(5) div x^(7) xx x^(4)

Simplify (4x^2+2x^2-3(x-7)-(-2x^4-2x^2+3x-5))

Simplify : 10-[8-{11+30div(4-overline(5-7))}]

Simplify: x^2-3x+5-1/2(3x^2-5x+7)

Simplify the following : 5x^(4) - 7x^(2) +8x - 1 +3x^(2) - 9x^(2) + 7 - 3x^(4)+11x - 2 +8x^(2)

Simplify the following 9x-[8-(3-7x)-3[5x-3(4-2x)}]