Home
Class 8
MATHS
Simplify : x^(5) div x^(7) xx x^(4)...

Simplify :
`x^(5) div x^(7) xx x^(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \frac{x^5}{x^7} \times x^4 \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \frac{x^5}{x^7} \times x^4 \] ### Step 2: Apply the division rule of exponents According to the laws of exponents, when dividing like bases, we subtract the exponents: \[ \frac{x^m}{x^n} = x^{m-n} \] So we can simplify \( \frac{x^5}{x^7} \) as follows: \[ \frac{x^5}{x^7} = x^{5-7} = x^{-2} \] ### Step 3: Rewrite the expression with the simplified division Now we can substitute back into the expression: \[ x^{-2} \times x^4 \] ### Step 4: Apply the multiplication rule of exponents According to the laws of exponents, when multiplying like bases, we add the exponents: \[ x^m \times x^n = x^{m+n} \] So we can simplify \( x^{-2} \times x^4 \) as follows: \[ x^{-2} \times x^4 = x^{-2 + 4} = x^{2} \] ### Final Answer Thus, the simplified expression is: \[ x^2 \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (A)|30 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (B)|35 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Simplify : x^(5) div (x^(2) xx y^(2)) xx y^(3)

Simplify : (x^(5) div x^(2)) xx y^(2) xx y^(3)

Simplify : a^(5) div a^(3) + 3a xx 2a

Simplify : (10x)/(5+x)

Simplify : b. (5)/(9) div ((3)/(10) xx (5)/(12))

Simplify : 7x + 4{x^(2) div(5x div 10)} - 3{2 - x^(3) div (3x^(2) div x)}

Simplify 3 4/7 div5

Simplify : i. (1 (5)/(7) xx (7)/(10) ) - ((3)/(5) div (9)/(10))

Simplify: 4x^(3)-2x^(2)+5x-1+8x+x^(2)-6x^(3)+7-6x+3-3x^(2)-x^(3)

Simplify : (-6)-{(-28)div(-7)}