Home
Class 9
MATHS
Use the Factor Theorem to determine whet...

Use the Factor Theorem to determine whether g (x) is factor of f(x) in each of the following cases:
(i) `f (x) = 5x ^(3) + x ^(2)-5x -1, g (x)=x +1`
(ii) `f (x) = x ^(3) + 3x ^(2) + 3x +1 , g(x) =x +1`
(iii) `f (x) =x ^(3) - 4x ^(2) +x + 6, g (x) =x -2`
(iv) `f (x) = 3x ^(3) - 20x + 12, g (x) = 3x -2`
(v) ` f (x) = 4x ^(3) + 20 x ^(2) + 33 x +18, g (x) =2x +3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Use the Factor Theorem to determine whether g(x) is factor of f(x) in each of the following cases : f(x)=5x^(3)+x^(2)-5x-1,g(x)=x+1

Use the Factor Theorem to determine whether g(x) is factor of f(x) in each of the following cases : f(x)=x^(3)-4x^(2)+x+6,g(x)=x-2

Use the Factor Theorem to determine whether g(x) is factor of f(x) in each of the following cases : f(x)=x^(3)+3x^(2)+3x+1,g(x)=x+1

Use the Factor Theorem to determine whether g(x) is factor of f(x) in each of the following cases : f(x)=3x^(3)+x^(2)-20x+12,g(x)=3x-2

Use the Factor Theorem to determine whether g(x) is factor of f(x) in each of the following cases : f(x)=4x^(3)+20x^(2)+33x+18,g(x)=2x+3

Use the Factor Theorem to determine whether g(x) is factor of f(x) in each of the following cases : (i) f(x)=5x^(3)+x^(2)-5x-1, g(x)=x+1 (ii) f(x)=x^(3)+3x^(2)+3x+1,g(x)=x+1 (iii) f(x)=x^(3)-4x^(2)+x+6,g(x)=x-2 (iv) f(x)=3cx^(3)+x^(2)-20x+12,g(x)=3x-2 f(x)=4x^(3)+20x^(2)+33x+18,g(x)=2x+3

If f(x)=2x^(3)-3x^(2)-x+1 Then f(x-1)

Find the domains of the followings real valued functions: (i) f(x) = (2x^(2)-5x + 7)/((x-1)(x-2)(x-3)) (ii) f(x) = 1/((x^(2)-1)(x+3)) (iii) f(x) =1/(6x-x^(2)-5) , (iv) f(x) = 1/(x+|x|)

If f (x) = (x -1)/( 2x ^(2) - 7x + 5) for x ne 1, f (1) = (-1)/(3), find f '(1).