Home
Class 11
MATHS
if f:[1,oo)->[2,oo) is given by f(x)=x+1...

if `f:[1,oo)->[2,oo)` is given by `f(x)=x+1/x` then `f^-1(x)` equals to : a) `(x+sqrt(x^2-4))/2` b) `x/(1+x^2)` c) `(x-sqrt(x^2-4))/2` d) `1+sqrt(x^2-4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If F:[1,x)rarr[2,x] is given by f(x)=x+(1)/(x), then f^(-1)(x) equals.(a) (x+sqrt(x^(2)-4))/(2)(b)(x)/(1+x^(2))(c)(x-sqrt(x^(2)-4))/(2) (d) 1+sqrt(x^(2)-4)

If F:[1,oo)vec 2,oo is given by f(x)=x+(1)/(x), then f^(-1)(x) equals.(x+sqrt(x^(2)-4))/(2)(b)(x)/(1+x^(2))(c)(x-sqrt(x^(2)-4))/(2)(d)1+sqrt(x^(2)-4)

If f : [1, oo) rarr [2, oo) is given by f(x) = x + (1)/(x) then f^(-1) (x) equals:

If f:[2,oo)rarr(-oo,4], where f(x)=x(4-x) then find f^(-1)(x)

If f'(x)=sqrt(x) and f(1)=2 then f(x) is equal to

If the function f:[1,oo)->[1,oo) is defined by f(x)=2^(x(x-1)), then f^-1(x) is (A) (1/2)^(x(x-1)) (B) 1/2 sqrt(1+4log_2x) (C) 1/2(1-sqrt(1+4log_2x)) (D) not defined

If the function f:[2,oo)rarr[-1,oo) is defined by f(x)=x^(2)-4x+3 then f^(-1)(x)=