Home
Class 12
MATHS
Find x if tan^(-1)x=tan^(-1)((1)/(3))+ta...

Find x if `tan^(-1)x=tan^(-1)((1)/(3))+tan^(-1)((1)/(4))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find x if tan^(-1)(x) = tan^(-1)(1/2) + tan^(-1)(3/7)

tan^(-1)2x+tan^(-1)3x=(pi)/(4)

tan^(-1)(x-1)+tan^(-1)(x+1)=(pi)/(4)

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

Solve the following equation for x:tan^(-1)((1)/(4))+2tan^(-1)((1)/(5))+tan^(-1)((1)/(6))+tan^(-1)((1)/(x))=(pi)/(4)

If tan^(-1)x+tan^(-1)(1-x)=tan^(-1)(4/3) then x=

If tan^(-1)x=(pi)/(4)-tan^(-1)((1)/(3))then x is

Solve for x:tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((8)/(31))

If tan^(-1)(x+(3)/(x))-tan^(-1)(x-(3)/(x))=tan^(-1)(6)/(x) then the value of x^(4) is

tan^(-1)((1)/(1+2x))+tan^(-1)((1)/(1+4x))=tan^(-1)((2)/(x^) (2)))