Home
Class 11
MATHS
Let z(1),z(2) and z(3) be three points o...

Let `z_(1),z_(2)` and `z_(3)` be three points on `|z|=1`. If `theta_(1), theta_(2)` and `theta_(3)` be the arguments of `z_(1),z_(2),z_(3)` respectively, then `cos(theta_(1)-theta_(2))+cos(theta_(2)-theta_(3))+cos(theta_(3)-theta_(1))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sintheta_(1)+sintheta_(2)+sintheta_(3)=3, then cos theta_(1)+cos theta_(2)+cos theta_(3)=

If the line vec(OR) makes angles theta_(1),theta_(2),theta_(3) with the planes XOY, YOZ, ZOX respectively , then cos^(2)theta_(1)+cos^(2)theta_(2)+cos^(2)theta_(3) is equal to

If sin(theta)_(1)+sin(theta)_(2)+sin(theta)_(3)=1 then cos(theta)_(1)+cos(theta)_(2)+cos(theta)_(3)=

If cos theta_(1)+cos theta_(2)+cos theta_(3)=-3 where theta_(1),theta_(2),theta_(3)in[0,2 pi] then value sin((theta_(1))/(2))+sin((theta_(2))/(2))+sin((theta_(3))/(2)) is

A line makes angle theta_(1),theta_(2),theta_(3) and theta_(4) with the diagonals of cube.Show that cos^(2)theta_(1)+cos^(2)theta_(2)+cos^(2)theta_(3)+cos^(2)theta_(4)=(4)/(3)

If cos theta_(1)+cos theta_(2)+cos theta_(3)=-3 then the value of sin((theta_(1))/(2))+sin((theta_(2))/(2))+sin((theta_(3))/(2))=

If theta_(1),theta_(2),theta_(3)....,theta_(n) are in A.P. then (sin theta_(1)+sin theta_(2)+...+sin theta_(n))/(cos theta_(1)+cos theta_(2)+...+cos theta_(n))=

z_(1)bar(z)_(2)+bar(z)_(1)z_(2)=2|z_(1)||z_(2)|cos(theta_(1)-theta_(2))

z_2/z_1 = (A) e^(itheta) cos theta (B) e^(itheta) cos 2theta (C) e^(-itheta) cos theta (D) e^(2itheta) cos 2theta

(cos(theta_(1)-theta_(2)))/(cos(theta_(1)+theta_(2)))+(cos(theta_(3)+theta_(4)))/(cos(theta_(3)-theta_(4)))=0then(tan theta_(1)*tan theta_(2))/(cot theta_(2)*cot theta_(4))