Home
Class 12
MATHS
Lim(x rarre)(log x-1)/(x-e)=...

`Lim_(x rarre)(log x-1)/(x-e)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: (lim)_(x rarr e)(log x-1)/(x-e)

lim_(x rarr e)(log x-1)/(x-e)=(1)/(e)

the value of lim_(x rarr e)(log x-1)/(x-e) equals to

lim_(x rarr1)(log x)/(x-1)=

Evaluate : lim_(x rarr e)(log_(e)x-1)/(x-1)

" 6."lim_(x rarr1)(log x)/(x-1)=

lim_ (x rarr e) (ln x-1) / (xe)

lim_(x rarr0)(log(1+x))/(x)=1

Evaluate lim_(x rarr0)(log_(e)x)/(x-1)