Home
Class 12
MATHS
If alpha, beta are real and alpha^2, -be...

If `alpha, beta` are real and `alpha^2, -beta^2` are the roots of the equation `a^2 x^2+x+(1-a^2)=0 \ (a > 1)` then `beta^2=` 1) `a^2` 2)1 3) `1-a^2` 4) `1+a^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are real and alpha^(2),-beta^(2) are the roots of the equation a^(2)x^(2)+x+(1-a^(2))=0(a>1) then beta^(2)= 1) a^(2)2113)1-a^(2)4)1+a^(2)

If alpha, beta are real and alpha^(2), beta^(2) are the roots of the equation a^(2)x^(2)-x+1-a^(2)=0 (1/sqrt2 lt a lt 1) and beta^(2) ne 1," then "beta^(2)=

If alpha and beta are real and alpha^(2) and -beta^(2) are roots of a^(2)x^(2)+x+1-a^(2)=0a>1 then beta^(2) is

If alpha and beta are the roots of the equation 4x^(2)+3x+7=0, then (1)/(alpha)+(1)/(beta)=

If alpha,beta,gamma are the roots of the equation 2x^(3)x^(2)+x-1=0 then alpha^(2)+beta^(2)+gamma^(2)=

If alpha,beta are the roots of the equation x^(2)-p(x+1)-c=0, then (alpha+1)(beta+1)=

If alpha and beta are the roots of the equation 3x^(2)+8x+2=0 then ((1)/(alpha)+(1)/(beta))=?

If alpha and beta are the roots of the equation x^(2)-x+1=0, then alpha^(2009)+beta^(2009)=-1 (b) 1( c) 2(d)-2