Home
Class 11
MATHS
" 4.The domain of the function "f(x)=(1)...

" 4.The domain of the function "f(x)=(1)/(sqrt({sin x}+{sin(pi+x)}))" where "{" -} denotes the fractional part,is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=(1)/(sqrt({sin x}+{sin(pi+x)})) where {.} denotes the fractional part,is (a) [0,pi](b)(2n+1)(pi)/(2),n in Z(c)(0,pi)(d) none of these

The domain of the function f(x)=(1)/(sqrt(|sin x|+sin x)) is

The domain of the function f(x)=sqrt(sin x-1) is

The domain of the function f(x)=(1)/(sqrt({x}))-ln(x-2{x}) is (where {.} denotes the fractional part function)

Find the domain of the function f(x)=sin^(-1)sqrt(x-1)

Period of the function f(x)=sin(sin(pix))+e^({3x}) , where {.} denotes the fractional part of x is

Period of the function f(x)=cos(cos pi x)+e^({4x}), where {.} denotes the fractional part of x, is

Domain of function f(x)=(1)/(sin sqrt([x]-x)) is

The domain of the function f(x)=sqrt(sin^(-1)(log_(2)x)) is

Domain of f(x)=(1)/(sqrt({x+1}-x^(2)+2x)) where {} denotes fractional part of x.