Home
Class 11
MATHS
1/(6!)+1/(7!)=x/(8!),f i n dx...

`1/(6!)+1/(7!)=x/(8!),f i n dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

1/(6i)+1/(7i)=x/(8i)

if (1)/(6!)+(1)/(7!)=(x)/(8!) find the value of x

If(1)/(6!)+(1)/(7!)=(X)/(8!), thenx =

If 1/6! + 1/7! = x/8! , find the value of x

int1/(7x^2-8)dx

f(x) is a continuous function for all real values of x and satisfies int_(n+1)^(n+1)f(x)dx=(n^(2))/(2)AA n in I. Then int_(5)^(5)f(|x|)dx is equal to (19)/(2) (b) (35)/(2) (c) (17)/(2) (d) none of these

f'(dx)/((x+6)^(8//7)(x-8)^(6//7)) is equal to

f(x)>0AAx in Ra n di sbou n d e ddotIf (lim)_(nvecoo)[int_0^a(f(x)dx)/(f(x)+f(a-x))+a^2+aint_a^(2a)(f(x)dx)/(f(x)+f(3a-x))+int_(2a)^(3a)(f(x)dx)/(f(x)+f(5a-x))++a^(n-1)int_((n-1)a)^(n a)(f(x)dx)/(f(x)+f[2n-1)a-x])]=7//5 (where a<1), then a is equal to 2/7 (b) 1/7 (c) (14)/(19) (d) 9/(14)

Let f : R to R be continuous function such that f (x) + f (x+1) = 2, for all x in R. If I _(1) int_(0) ^(8) f (x) dx and I _(2) = int _(-1) ^(3) f (x) dx, then the value of I _(2) +2 I _(2) is equal to "________"

If 8f(x)+6f((1)/(x))=x+5 and y=x^(2)(f(x), then (dy)/(dx) at x=-1 is equal to 0( b) (1)/(14)(c)-(1)/(4)(d) None of these