Home
Class 12
MATHS
xsqrt(1+y)+ysqrt(1+x)=0, then (dy)/(dx)=...

`xsqrt(1+y)+ysqrt(1+x)=0`, then `(dy)/(dx)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= xsqrt(x) then (dy)/(dx) =?

If x sqrt(1+y)+y sqrt(1+x)=0, find (dy)/(dx)* To prove (dy)/(dx)=-(1)/((1+x)^(2))

If y=sin ^(-1) (xsqrt( 1-x) +sqrt(x) sqrt (1-x^(2))),then (dy)/(dx)=

If x=ysqrt(1-y^(2)) , then (dy)/(dx)=

x sqrt(1+y)+y sqrt(1+x)=0 for, for,(dy)/(dx)=-(1)/((1+x)^(2))

If x sqrt(1+y)+y sqrt(1+x)=0, prove that (dy)/(dx)=-(1)/((x+1)^(2))

If x sqrt(y+1)+y sqrt(x+1)=0 & x!=y, then (dy)/(dx)=

"If "xsqrt(1+y)+ysqrt(1+x)=0," prove that "(dy)/(dx)=-(1)/((x+1)^(2)).

If xsqrt(y)+ysqrt(x)=1"then"(dy)/(dx) equals -