Home
Class 11
MATHS
If sin^(-1)x+sin^(-1)y=(2pi)/(3), cos^(-...

If `sin^(-1)x+sin^(-1)y=(2pi)/(3), cos^(-1)x-cos^(-1)y=(pi)/(3)` then the number of values of (x, y) is :

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)x+sin^(-1)y=(2 pi)/(3) and cos^(-1)x-cos^(-1)y=-(pi)/(3) then the number of values of (x,y) is

If sin^(-1)x + sin^(-1)y =(2pi)/3 , then: cos^(-1)x +cos^(-1)y=

If sin^(-1)x+sin^(-1)y=(pi)/(3) and cos^(-1)x+cos^(-1)y=(pi)/(6), find the values of x and y.

If sin^(-1)x +sin^(-1)y =pi then cos^(-1)x +cos^(-1)y is :

If sin^(-1)x+cos^(-1)y=(2pi)/(5),"then "cos^(-1)x+sin^(-1)y =

If sin^(-1)x+sin^(-1)y=(pi)/(2), "then" cos^(-1)x+cos^(-1)y is equal to

If sin^(-1)x+sin^(-1)y=(2pi)/3 , then cos^(-1)x+cos^(-1)y is equal to