Home
Class 12
MATHS
Verify Property 2 for Delta=|[2 , -3, 5...

Verify Property 2 for `Delta=|[2 , -3, 5],[ 6, 0, 4],[ 1, 5, -7]|`

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    V PUBLICATION|Exercise QUESTION BANK|168 Videos
  • DIFFERENTIAL EQUATIONS

    V PUBLICATION|Exercise QUESTION BANK|149 Videos

Similar Questions

Explore conceptually related problems

Verify Property 1 for Delta=|[2 ,-3, 5],[ 6, 0, 4],[ 1, 5, -7]|

Find minors and cofactors of the elements of the determinant |[2, -3, 5],[ 6, 0, 4],[ 1 , 5, -7]| and verify that a_(11) A_(31)+a_(12) A_(32)+a_(13) A_(33)=0

Using cofactors of element of second row evaluate Delta=|[5, 3, 8],[ 2, 0, 1],[ 1, 2, 3]|

Find the minors and co-factors of the elements 1,-3 and 4 in Delta=|[2, 1, 0 ],[-3 , 5 , -2],[ 6, 9, 4]|

Find minors of element 6 in the determinant Delta=|[ 1, 2, 3],[ 4, 5, 6],[ 7 , 8, 9]|

Find the minor of 1 in the determinant Delta=|[3, 4, 5 ],[2, 7, 1],[ 9, 2, 6]|

Compute the indicated products. i) [[a , b],[ -b , a]] [[a, -b],[ b, a]] ii) [[1], [ 2], [3]][[2, 3 ,4]] iii) [[1, (-2)],[ 2 ,3]] [[1 , 2 ,3],[ 2, 3 , 1]] iv) [[2 , 3 , 4 ],[ 3 , 4 , 5 ],[ 4, 5 ,6]] [[1 , -3, 5],[ 0, 2, 4],[ 3, 0, 5]] v) [[2 , 1],[ 3 , 2],[ (-1), 1]] [[1, 0 , 1],[ (-1), 2, 1]] vi) [[3, (-1), 3],[ (-1), 0, 2]][[2, -3],[ 1 , 0],[ 3, 1]]

Show that i) [[5 , (-1)],[ 6, 7]][[2, 1],[ 3 ,4]] ne[[2 , 1 ],[3 , 4]][[5, (-1)],[ 6 ,7]] ii) [[1, 2 , 3],[ 0 , 1, 0],[ 1 , 1, 0]][[(-1), 1, 0],[ 0, (-1), 1],[ 2, 3, 4]] ne[[(-1), 1, 0],[ 0, (-1), 1],[ 2, 3, 4]] [[1 , 2, 3],[ 0, 1, 0],[ 1, 1, 0]] .

If A =[[1, 2, -3],[ 5, 0, 2],[ 1, -1, 1]], B=[[3, -1, 2],[ 4, 2, 5],[ 2, 0, 3]] and C=[[4 ,1 , 2],[ 0, 3, 2],[ 1, -2, 3]] then compute (A+B) and (B-C) . Also verify that A+(B-C)=(A+B)-C

If A=[[-1, 2, 3],[ 5, 7, 9],[ -2, 1 , 1]] and B=[[-4 , 1, -5],[ 1, 2, 0],[ 1, 3, 1]] then verify that (i) (A+B)^'=A^'+B^'

V PUBLICATION-DETERMINANT-QUESTION BANK
  1. If |[x ,2],[ 18, x]|=|[ 6, 2 ],[ 18, 6]|, then x is equal to a)6 ...

    Text Solution

    |

  2. Verify Property 1 for Delta=|[2 ,-3, 5],[ 6, 0, 4],[ 1, 5, -7]...

    Text Solution

    |

  3. Verify Property 2 for Delta=|[2 , -3, 5],[ 6, 0, 4],[ 1, 5, -7]...

    Text Solution

    |

  4. Evaluate Delta=|[3, 2, 3],[ 2, 2, 3],[ 3, 2, 3]|

    Text Solution

    |

  5. Evaluate |[102, 18, 36],[ 1, 3, 4],[ 17, 3, 6]|

    Text Solution

    |

  6. prove that abs[[a,b,c],[a+2x,b+2y,c+2z],[x,y,z]]=0

    Text Solution

    |

  7. Prove that |[a, a+b, a+b+c],[ 2 a, 3 a+2 b, 4 a+3 b+2 c],[ 3 a, ...

    Text Solution

    |

  8. Without expanding prove that abs[[x+y,y+z,z+x],[z,x,y],[1,1,1]]=0

    Text Solution

    |

  9. Evaluate Delta=|[1, a, bc],[ 1, b, c a],[ 1, c, a b]|

    Text Solution

    |

  10. Using properties of determinants prove the following. abs[[b+c,a,...

    Text Solution

    |

  11. Consider the determinant Delta=abs[[x,x^2,1+x^3],[y,y^2,1+y^3],[z,z^2,...

    Text Solution

    |

  12. Using properties of determinants show that abs[[1+a,1,1],[1,1+b,1]...

    Text Solution

    |

  13. Without expanding the determinant prove the following. |[x,a,x+a],[y...

    Text Solution

    |

  14. Without expanding the determinant prove the following. |[a-b,b-c,c-a...

    Text Solution

    |

  15. Evaluate |[2, 7, 65],[ 3, 8, 75],[ 5, 9, 86]|=0

    Text Solution

    |

  16. prove |[1, b c, a(b+c)],[ 1, c a, b(c+a)],[ 1, a b, c(a+b)]|=0

    Text Solution

    |

  17. Without expanding the determinant prove the following. |[b+c,q+r,y+z...

    Text Solution

    |

  18. By using properties of determinants, prove that |[0,a ,-b],[-a,0,-c],...

    Text Solution

    |

  19. By using properties of determinants, prove that |[-a^2,ab,ac],[ba,-b^...

    Text Solution

    |

  20. Show that abs[[1,a,a^2],[1,b,b^2],[1,c,c^2]]=(a-b)(b-c)(c-a)

    Text Solution

    |