Home
Class 12
MATHS
Prove that |[a, a+b, a+b+c],[ 2 a, 3...

Prove that `|[a, a+b, a+b+c],[ 2 a, 3 a+2 b, 4 a+3 b+2 c],[ 3 a, 6 a+3 b, 10 a+6 b+3 c]|=a^3`

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    V PUBLICATION|Exercise QUESTION BANK|168 Videos
  • DIFFERENTIAL EQUATIONS

    V PUBLICATION|Exercise QUESTION BANK|149 Videos

Similar Questions

Explore conceptually related problems

Consider abs[[a,a+b,a+b+c],[2a,3a+2b,4a+3b+2c],[3a,6a+3b,10a+6b+3c]]

Prove that |[1 , a , a^3],[ 1, b, b^3],[ 1, c, c^3]|=(a-b)(b-c)(c-a)(a+b+c)

Ifa,b,c are vectors such that a + b + c = 0 and | a | = 7, | b | = 5,| c | = 3, then the angle between c and b is a) pi//3 b) pi//6 c) pi//4 d) pi

If the system of equations x - 2y +z = a , 2x + y - 2z = b, x +3y - 3z = c, has at least one solution, then a) a + b + c = 0 b) a - b + c = 0 c) -a + b + c = 0 d) a + b - c = 0

If |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))| = (a - b) (b - c) (c - a) (a + b + c) , where a,b,c are all different, then the determinant |(1,1,1),((x-a)^(2),(x-b)^(2),(x-c)^(2)),((x-b)(x-c),(x-c)(x-a),(x-a)(x-b))| vanishes when a)a + b + c = 0 b) x = (1)/(3) (a + b + c) c) x = (1)/(2) (a + b + c) d) x = a + b + c

If A =[[1, 2, -3],[ 5, 0, 2],[ 1, -1, 1]], B=[[3, -1, 2],[ 4, 2, 5],[ 2, 0, 3]] and C=[[4 ,1 , 2],[ 0, 3, 2],[ 1, -2, 3]] then compute (A+B) and (B-C) . Also verify that A+(B-C)=(A+B)-C

V PUBLICATION-DETERMINANT-QUESTION BANK
  1. Evaluate |[102, 18, 36],[ 1, 3, 4],[ 17, 3, 6]|

    Text Solution

    |

  2. prove that abs[[a,b,c],[a+2x,b+2y,c+2z],[x,y,z]]=0

    Text Solution

    |

  3. Prove that |[a, a+b, a+b+c],[ 2 a, 3 a+2 b, 4 a+3 b+2 c],[ 3 a, ...

    Text Solution

    |

  4. Without expanding prove that abs[[x+y,y+z,z+x],[z,x,y],[1,1,1]]=0

    Text Solution

    |

  5. Evaluate Delta=|[1, a, bc],[ 1, b, c a],[ 1, c, a b]|

    Text Solution

    |

  6. Using properties of determinants prove the following. abs[[b+c,a,...

    Text Solution

    |

  7. Consider the determinant Delta=abs[[x,x^2,1+x^3],[y,y^2,1+y^3],[z,z^2,...

    Text Solution

    |

  8. Using properties of determinants show that abs[[1+a,1,1],[1,1+b,1]...

    Text Solution

    |

  9. Without expanding the determinant prove the following. |[x,a,x+a],[y...

    Text Solution

    |

  10. Without expanding the determinant prove the following. |[a-b,b-c,c-a...

    Text Solution

    |

  11. Evaluate |[2, 7, 65],[ 3, 8, 75],[ 5, 9, 86]|=0

    Text Solution

    |

  12. prove |[1, b c, a(b+c)],[ 1, c a, b(c+a)],[ 1, a b, c(a+b)]|=0

    Text Solution

    |

  13. Without expanding the determinant prove the following. |[b+c,q+r,y+z...

    Text Solution

    |

  14. By using properties of determinants, prove that |[0,a ,-b],[-a,0,-c],...

    Text Solution

    |

  15. By using properties of determinants, prove that |[-a^2,ab,ac],[ba,-b^...

    Text Solution

    |

  16. Show that abs[[1,a,a^2],[1,b,b^2],[1,c,c^2]]=(a-b)(b-c)(c-a)

    Text Solution

    |

  17. By using properties of determinants, prove that |[x,x^2,yz],[y,y^2,zx...

    Text Solution

    |

  18. Prove that abs[[y+k,y,y],[y,y+k,y],[y,y,y+k]]=k^2(3y+k)

    Text Solution

    |

  19. By using properties of determinants, prove that |[x+y+2z,x,y],[z,y+z+...

    Text Solution

    |

  20. Using properties of determinants prove the following. abs[[1,x,x^2...

    Text Solution

    |