Home
Class 12
MATHS
Without expanding the determinant, Pro...

Without expanding the determinant,
Prove that `|[a,a^2, bc],[b,b^2,ca],[c,c^2,ab]|=` `|[1,a^2,a^3],[1,b^2,b^3],[1,c^2,c^3]|`

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    V PUBLICATION|Exercise QUESTION BANK|168 Videos
  • DIFFERENTIAL EQUATIONS

    V PUBLICATION|Exercise QUESTION BANK|149 Videos

Similar Questions

Explore conceptually related problems

By using properties of determinants, prove that |[-a^2,ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]|=4a^2b^2c^2

Without expanding the determinant prove the following. |[a-b,b-c,c-a],[b-c,c-a,a-b],[c-a,a-b,b-c]|=0

Without expanding the determinant prove the following. |[1,bc,a(b+c)],[1,ca,b(c+a)],[1,ab,c(a+b)]|=0

Prove that |[a^2,bc,ac+c^2],[a^2+ab,b^2,ac],[ab,b^2+bc,c^2]|=4a^2b^2c^2

By using the properties of determinants,prove that |[a^2+1,ab ,ac],[ab,b^2+1,bc],[ca ,cb,c^2+1]|=1+a^2+b^2+c^2

Using properties of determinants, show that abs[[a,a^2,b+c],[b,b^2,c+a],[c,c^2,a+b]]=(b-c)(c-a)(a-b)(a+b+c)

using properties of determinants, prove that abs[[1,a,a^2],[1,b,b^2],[1,c,c^2]]=(a-b)(b-c)(c-a) .

Prove that abs[[a-b-c,2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]]=(a+b+c)^3

Show that Delta=abs[[-a^2,ab,ac],[ba,-b^2,bc],[ac,bc,-c^2]]=4a^2b^2c^2

By using the properties of determinants,prove that |[1+a^2-b^2,2ab ,-2b],[2ab,1-a^2+b^2,2a],[2b ,-2a,1-a^2-b^2]|=(1+a^2+b^2)^3

V PUBLICATION-DETERMINANT-QUESTION BANK
  1. Prove that Delta=|[a+b x, c+d x, p+q x],[ a x+b, c x+d, p x+q],[ ...

    Text Solution

    |

  2. Prove that |[x,sintheta, costheta],[-sintheta,-x,1],[costheta,1,x]| is...

    Text Solution

    |

  3. Without expanding the determinant, Prove that |[a,a^2, bc],[b,b^2,ca...

    Text Solution

    |

  4. Evaluate |[cos alpha cos beta, cos alpha sin beta, -sin alpha],[ -s...

    Text Solution

    |

  5. If a,b,c are real numbers and abs[[b+c,c+a,a+b],[c+a,a+b,b+c],[a+b,b+...

    Text Solution

    |

  6. Solve the equation |[x+a,x,x],[x,x+a,x],[x,x,x+a]|=0, a ne0

    Text Solution

    |

  7. Prove that |[a^2,bc,ac+c^2],[a^2+ab,b^2,ac],[ab,b^2+bc,c^2]|=4a^2b^2c^...

    Text Solution

    |

  8. If A^(-1)=[[3,-1,1],[-15,6,-5],[5,-2,2]] and B=[[1,2,-2],[-1,3,0],[0,-...

    Text Solution

    |

  9. Let A=[[1,-2,1],[-2,3,1],[1,1,5]] verify that (A^(-1))^(-1)=A

    Text Solution

    |

  10. Evaluate |[x, y, x+y],[ y, x+y, x],[ x+y, x, y]|

    Text Solution

    |

  11. evaluate | [1,x,y],[1,x+y,y],[1,x,x+y] |

    Text Solution

    |

  12. Using properties of determinants, prove that |[alpha, alpha^2, beta+g...

    Text Solution

    |

  13. Using properties of determinants, prove that |[3a,-a+b,-a+c],[-b+a,3...

    Text Solution

    |

  14. Using properties of determinants, prove that |[1,1+p,1+p+q],[2,3+2p,...

    Text Solution

    |

  15. Using properties of determinants, prove that |[sinalpha,cosalpha,cos...

    Text Solution

    |

  16. Consider a system of linear equations which is given below, 2/x+3/...

    Text Solution

    |

  17. If a,b,c are in A.P., then the determinant |[x+2, x+3, x+2a],[x+3,x+...

    Text Solution

    |

  18. If x, y, z are non zero real numbers, then find the inverse of matrix ...

    Text Solution

    |

  19. Let A = [[1,Sintheta,1],[-Sintheta,1,Sintheta],[-1,-Sintheta,1]], wher...

    Text Solution

    |

  20. If A(x1, y1), B(x2, y2) and C(x3, y3) are vertices of an equilateral t...

    Text Solution

    |