Home
Class 12
MATHS
int( d x)/(e^x+e^(-x)) is equal to a)tan...

`int( d x)/(e^x+e^(-x))` is equal to a)`tan ^(-1)(e^x)+C` b)`tan ^(-1)(e^-x)+C` c)`log (e^x-e^-x)+C` d)`log (e^x+e^-x)+C`

A

tan ^(-1)(e^x)+C^circ'

B

tan '^(-1)(e^-x)+C'

C

log (e^x-e^-x)+C'

D

log (e^x+e^-x)+C'

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    V PUBLICATION|Exercise QUESTION BANK|149 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    V PUBLICATION|Exercise QUESTION BANK|80 Videos

Similar Questions

Explore conceptually related problems

int(4e^(x))/(2e^(x)-5e^(-x))dx is equal to

int e^(x log a ) e^(x) dx is equal to :

(e^x+e^(-x)) d y-(e^x-e^(-x)) d x=0

int ((1 + x ) e ^(x))/( sin ^(2) (xe ^(x))) dx is equal to a) - cot (e ^(x)) + C b) tan (xe ^(x)) + C c) tan (e ^(x)) + C d) -cot (x e ^(x)) + C

int (4e^(x) + 6e^(-x))/(9e^(x) - 4e^(-x))dx is equal to

int( e^x(1+x))/(cos ^2(e^x x)) d x equals a) -cot (e x^x)+ C b) tan (x e^x)+C c) tan (e^x)+C d) cot (e^x)+C

int(e^(-x))/(1+e^(x))dx=

inte^(-x)(1-tanx)secxdx is equal to a) e^(-x)secx+c b) e^(-x)tanx+c c) -e^(-x)tanx+c d) -e^(-x)secx+c

The integral int(1+x-1/x)e^(x+1/x)dx is equal to a) (x-1)e^(x+1/x)+c b) xe^(x+1/x)+c c) (x+1)e^(x+1/x)+c d) -xe^(x+1/x)+c

int (xe ^(x))/( (1 + x )^(2)) dx is equal to a) ( - e ^(x))/( x +1) + C b) (e ^(x))/( x +1 ) + C c) (xe ^(x))/( x +1)+ C d) (- xe ^(x))/( x +1 ) +C