Home
Class 11
MATHS
Show that cos ((pi)/(2)-x)=sin x...

Show that
`cos ((pi)/(2)-x)=sin x`

Text Solution

Verified by Experts

If we replace .x. by .(pi)/(2). and .y. by .x. in Identity (4), we get .
.cos ^(-)((pi)/(2)-x)=cos (pi)/(2) cos x+sin ^(prime) (pi)/(2) sin x=sin x.
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    V PUBLICATION|Exercise QUESTIONBANK|99 Videos

Similar Questions

Explore conceptually related problems

Show that sin ((pi)/(2)-x)=cos x

Show that cos 2 x=cos ^(2) x-sin ^(2) x=2 cos ^(2) x-1=1-2 sin ^(2) x=(1-tan ^(2) x)/(1+tan ^(2) x)

Prove that cos((3pi)/2+x)cos(2pi+x)[cot((3pi)/2-x)+cot(2pi+x)]=1

For 0 lt x le (pi)/(2) , show that x - (x^(3))/(6) lt sin x

Prove that (cos(pi+x)cos(-x))/(sin(pi-x)cos(pi/2+x) = cot^2x

Show that cos ^(2) x+cos ^(2)(x+(pi)/(3))+cos ^(2) (x-(pi)/(3))=(3)/(2)

Show that (i) sin ^(2) 6 x-sin ^(2) dot(4) x=sin 2 x sin 10 x (ii) cos ^(2) 2 x-cos ^(2) 6 x=sin 4 x sin 8 x

cos (2pi-x) =