Home
Class 11
MATHS
IF 1/(8!) +1/(9!) = x/(10!) , find x....

IF `1/(8!) +1/(9!) = x/(10!)` , find x.

Text Solution

Verified by Experts

We have `1/8 !+1/9 xx 8 !=x/10 xx 9 xx 8 !`
Therefore `1+1/9=x/10 xx 9` or `10/9=x/10 xx 9`
So `x=100`
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    V PUBLICATION|Exercise QUESTION BANK|84 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    V PUBLICATION|Exercise QUESTION BANK|43 Videos

Similar Questions

Explore conceptually related problems

if 1/(8!) +1/(9!) = x/(10!) , then find x.

if 1/(6!) +1/(7!) = x/(8!) , find x.

if 1/(6!)+1/(7!)=x/(8!) , then x is ……

If f(x)=8x^3 and g(x)=x^(1/3) , find g(f(x)) and f(g(x))

If f(x)=x/(x-1) , x!=1 Find fof(x)

If the third in the expansion of (1+x)^(m)" is "-(1)/(8) x^(2) . Then find the value of m.

x=1/(sqrt2+1) Find x+1/x

lim_(xrarr0)((10"sin"9x)/(9"sin"10x))((8"sin"7x)/(7"sin"8x))((6"sin"5x)/(5"sin"6x))((4"sin"3x)/(3"sin"4x))(("sin"x)/("sin"2x)) is equal to a) 63/(256) b) 1/(6) c) 6/(5) d) 1/(2)

If the middle term of ((1)/(x)+x sin x)^(10) is equal to 7(7)/(8) , then find the value of x.