Home
Class 11
MATHS
If [[1,0,0],[0,y,0],[0,0,1]][[x],[-1],[z...

If `[[1,0,0],[0,y,0],[0,0,1]][[x],[-1],[z]]=[[1],[2],[1]],` then the value of `x+y+z` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If [[1,0,0],[0,1,0],[0,0,1]][[x],[y],[z]]=[[1],[-1],[0]] then value of (x+y+z)is

The solution of the equation [[1,0 ,1],[-1,1 ,0],[0 ,-1,1]][[x],[ y] ,[z]]=[[1],[ 1],[ 2]] is

If |[x,2,0],[2,x,0],[0,0,1]|+|[y,1],[0,0]|+|[0,1],[0,z]|=0 ,then find x

.If [[x-1,2,y-5],[z,0,2],[1,-1,1+a]]=[[1-x,2,-y],[2,0,2],[1,-1,1]] then find x,y,z,a

The line x=1, y=2, z=0 is

If [(1, 0 ,0 ),(0,y,0),( 0, 0, 1)][(x),(-1),(z)]=[(1),( 0),( 1)] , find x ,\ y\ a n d\ z .

If [(1,2,-3),(0,4,5),(0,0,1)][(x),(y),(z)]=[(1),(1),(1)] , then (x, y, z) is equal to

If [(1,0,0 ), (0,-1,0), (0,0, -1)][(x),(y),( z)]=[(1),(0),(1)] , find x ,\ y\ a n d\ z .

If [(1 ,0, 0) ,(0 ,1, 0),( 0 ,0 ,1)][(x),( y),( z)]=[(1),(-1),( 0)] , find x ,\ y\ a n d\ z .