Home
Class 12
MATHS
If I=underset(0)overset(pi//4)int log(1+...

If `I=underset(0)overset(pi//4)int log(1+tan x)dx`, then I=

Promotional Banner

Similar Questions

Explore conceptually related problems

Let I= underset(pi//4)overset(pi//3)int (sinx)/x dx , then I belongs to

If I=int_(0)^(pi//4) log(1+tan x)dx , then I=

int_(0)^(pi//4) log (1+tan x) dx =?

(i) int e^(4log x)dx

If I underset(1)overset(2)(int)log_(11)(x^3 - x^2 + 6x -5) dx, then:

int_(0)^(pi//2) log (tan x ) dx=

Evaluate the following definite integrals underset(0)overset(pi//4)int(dx)/(1+cos2x)

If I_(1)=int_(0)^(oo) (dx)/(1+x^(4))dx and I_(2)underset(0)overset(oo)int dx"then"n (I_(1))/(I_(2))=

underset(1)overset(e)int (e^(x))/(x) (1 + x log x)dx